Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 01001
Number of page(s) 7
Section Chapter 1 Chemical Engineering
Published online 29 July 2016
  1. A. Malaviya and J. Gomes, Androstenedione production by biotransformation of phytosterols, Bioresour. Technol. 99 (2008) 6725–6737. [CrossRef] [Google Scholar]
  2. O.V. Egorova, V.M. Nikolayeva, G.V. Sukhodolskaya, M.V. Donova, Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium spp, J. Mol. Catal. B: Enzym. 57(2009) 198–203. [CrossRef] [Google Scholar]
  3. Y. Liu, G. Chen, F. Ge, W. Li, L. Zeng, W. Cao, Efficient biotransformation of cholesterol to androsta-1, 4-diene-3, 17-dione by a newly isolated actinomycete Gordonia neofelifaecis, World J. Microbiol. Biotechnol. 27 (2011) 759–765. [CrossRef] [Google Scholar]
  4. S.K. Venu Gopal, S. Naik, P. Somal, P. Sharma, A. Arjuna, R. Ul Hassan, R.K. Khajuria, G.N. Qazi, Production of 17-keto androstene steroids by the side chain cleavage of progesterone with Bacillus sphaericus, Biocatal. Biotransform. 26 (2008) 272–279. [CrossRef] [Google Scholar]
  5. A. Cruz, P. Fernandes, J.M.S. Cabral, H.M. Pinheiro, Effect of phase composition on the whole-cell bioconversion of β-sitosterol in biphasic media, J. Mol. Catal. B: Enzym. 20 (2002) 371–375. [CrossRef] [Google Scholar]
  6. Z. Wang, J. Xu and D. Chen, Whole cell microbial transformation in cloud point system, J. Ind. Microbiol. Biotechnol. 35 (2008) 645–656. [CrossRef] [Google Scholar]
  7. S.S. Mohamed, A.H. El-refai, A.M. Hashem, H.A. Ali, Approaches to improve the solubility and availability of progesterone biotransformation by Mucor racemosus. Biocatal. Biotransform. 32 (2014) 141–150. [CrossRef] [Google Scholar]
  8. Y. Shen, M. Wang, H. Li, Y. Wang, J. Luo, Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum. J. Ind. Microbiol. Biotechnol. 39 (2012) 1253–1259. [CrossRef] [Google Scholar]
  9. Y. Wu, H. Li, Z. Lu, H. Li, Z. Rao, Y. Geng, J. Shi, Z. Xu, Enhancement of steroid hydroxylation yield from dehydroepiandrosterone by cyclodextrin complexation technique, Steroids. 84 (2014) 70–77. [CrossRef] [Google Scholar]
  10. S. Kwon, W. Lee, H.J. Shin, S. Yoon, Y. Kim, Y.J. Kim, K. Lee, S. Lee, Characterization of cyclodextrin complexes of camostat mesylate by ESI mass spectrometry and NMR spectroscopy, J. Mol. Struct. 938(2009) 192–197. [CrossRef] [Google Scholar]
  11. X. Zhao, X. Li, J. Wang, K. Zhao, L. Zhang, Inclusion effect of sulfobutyl ether-β-cyclodextrin on lansoprazole, Zhongguo Yiyao Gongye Zazhi. 46 (2015)167–171. [Google Scholar]
  12. O. Sha, Q. Shao, B. Huang, W. Xu, Characterization of succinate in the reaction process of phytosterol with succinic anhydride, Zhongguo Youzhi. 29(2004) 34–37. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.