Open Access
Issue
MATEC Web of Conferences
Volume 61, 2016
The International Seminar on Applied Physics, Optoelectronics and Photonics (APOP 2016)
Article Number 05018
Number of page(s) 4
Section Chapter 5 Materials Science
DOI https://doi.org/10.1051/matecconf/20166105018
Published online 28 June 2016
  1. Yang, Ding-Xin, et al, Through-Metal-Wall PowerDelivery and Data Transmission for Enclosed Sensors: A Review. Sensors 15. 12 (2015) 31581–31605. [CrossRef]
  2. Lawry, Tristan J., et al, A high-performance ultrasonic system for the simultaneous transmission of data and power through solid metal barriers, Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on 60. 1 (2013) 194–203.
  3. Wilt, K. R., Lawry, T. J., Scarton, H. A., Roa-Prada, S., Saulnier, G. J., Ashdown, J. D., Das, P. K. and Pinezich, J. D. Mechanical Design Implications on Power Transfer Through Thick Metallic Barriers Using Piezoelectric Transducers, ASME 2010 International Mechanical Engineering Congress and Exposition, (2010).
  4. Zhang, Q., Shi, S. and Chen, W. Research on Effective Electric-Mechanical Coupling Coefficient of Sandwich Type Piezoelectric Ultrasonic Transducer Using Bending Vibration Mode, Advances in Mechanical Engineering, 7 (1), 204370–204370, (2014). [CrossRef]
  5. Chang, Zensheu, et al, Power loss consideration in wireless piezoelectric acoustic-electric power feedthru, The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics (2007)
  6. Lawry, T. J., Wilt, K. R., Roa-Prada, S., Ashdown, J. D., Saulnier, G. J., Scarton, H. A., Das, P. K. and Pinezich, J. D. Electrical optimization of power delivery through thick steel barriers using piezoelectric transducers, Proceedings of SPIE - The International Society for Optical Engineering, 7683 (6), 768314–768314-12, (2010).
  7. Krimholtz, Richard, David A. Leedom, and George L. Matthaei, New equivalent circuits for elementary piezoelectric transducers, Electronics Letters 6.13 (1970): 398–399. [CrossRef]
  8. Xiao, S. and Li, Y. Modeling and High Dynamic Compensating the Rate-Dependent Hysteresis of Piezoelectric Actuators via a Novel Modified Inverse Preisach Model, IEEE Transactions on Control Systems Technology, 21 (5), 1549–1557, (2013). [CrossRef]
  9. Paradies, R. and Schlapfer, B. Finite element modeling of piezoelectric elements with complex electrode configuration, Smart Materials & Structures, 18 (2), 1282–1294, (2009).
  10. Hu, Yuantai, et al, Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers, Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on 50. 7 (2003) 773–781.
  11. Wilt, K. R., Scarton, H. A., Roa-Prada, S., Saulnier, G. J., Ashdown, J. D., Lawry, T. J., Das, P. K., Gavens, A. J., Wilt, K. R. and Scarton, H. A. Finite Element Modeling and Simulation of a Two-Transducer Through-Wall Ultrasonic Communication System, ASME 2009 International Mechanical Engineering Congress and Exposition, (2009).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.