Open Access
MATEC Web of Conferences
Volume 60, 2016
2016 3rd International Conference on Chemical and Biological Sciences
Article Number 01001
Number of page(s) 6
Section Materials science and Application
Published online 08 June 2016
  1. Zhu. T, M.N. Chong, and E.S. Chan, Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. ChemSusChem, 7, 11 (2014): p. 2974-2997. [CrossRef] [Google Scholar]
  2. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nature materials, 10, 6 (2011): p. 456-461. [CrossRef] [Google Scholar]
  3. M. Izaki, M. Nagai,K. Maeda, F. Mohamad, K. Motomura, J. Sasano, S. Watase , Electrodeposition of 1.4-eV-bandgap p-copper (II) oxide film with excellent photoactivity. Journal of The Electrochemical Society, 158, 9 (2011): p. D578-D584. [CrossRef] [Google Scholar]
  4. Y.F. Lim, C.S. Chua, C.J.J. Lee, D. Chi, Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Physical Chemistry Chemical Physics, 2014. 16, 47 (2014): p. 25928-25934. [CrossRef] [Google Scholar]
  5. A. Chen, H. Long, X. Li, Y. Li, G. Yang, P. Lu, Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition. Vacuum, 83, 6 (2009): p. 927-930. [CrossRef] [Google Scholar]
  6. Y. Wang, T. Jiang, D. Meng, J. Yang, Y. Lim Q. Ma, J. Han, Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties. Applied Surface Science, 317 (2014): p. 414-421. [CrossRef] [Google Scholar]
  7. M.R. Johan, M.S.M. Suan, N.L. Hawari, H.A. Ching, Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Int. J. Electrochem. Sci, 6 (2011): p. 6094-6104. [Google Scholar]
  8. Akhavan, O. and E. Ghaderi, Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surface and Coatings Technology, 205, 1 (2010): p. 219-223. [CrossRef] [Google Scholar]
  9. S. Wei, Y. Ma, Y. Chen, L. Liu, Z. Shao, Fabrication of WO3/Cu2O composite films and their photocatalytic activity. Journal of hazardous materials, 194 (2011): p. 243-249. [CrossRef] [Google Scholar]
  10. S. Ito, S.M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M.K. Nazeeruddin, P. Pechy, M. Takata, H. Miura,High Efficiency Organic Dye Sensitized Solar Cells Controlled by Nanocrystalline TiO2 Electrode Thickness. Advanced Materials, 18,9 (2006): p. 1202-1205. [CrossRef] [Google Scholar]
  11. V. Patake, S. Joshim C. Lokhande, O.S. Joo, Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Materials Chemistry and Physics, 2009. 114, 1 (2009): p. 6-9. [CrossRef] [Google Scholar]
  12. Kwong, W., N. Savvides, and C. Sorrell, Electrodeposited nanostructured WO3 thin films for photoelectrochemical applications. Electrochimica Acta, 75 (2012): p. 371-380. [CrossRef] [Google Scholar]
  13. M. Takahashi, K. Tsukigi, T. Uchino, T. Yoko, Enhanced photocurrent in thin film TiO2 electrodes prepared by sol–gel method. Thin Solid Films, 2001. 388, 1 (2001): p. 231-236. [CrossRef] [Google Scholar]
  14. K.R. Lee, Y.P. Hsu, J.L. Chang, S.W. Lee, C.J. Tseng, J.S.C. Jang, Effects of Spin Speed on the Photoelectrochemical Properties of Fe2O3 Thin Films. Int. J. Electrochem. Sci, 9 (2014): p. 7680-7692. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.