Open Access
Issue
MATEC Web of Conferences
Volume 58, 2016
The 3rd Bali International Seminar on Science & Technology (BISSTECH 2015)
Article Number 03003
Number of page(s) 7
Section Information Technology and Information Systems
DOI https://doi.org/10.1051/matecconf/20165803003
Published online 23 May 2016
  1. Coenen, F., Goulbourne, G. & Leng, P., 2003. Tree Structures for Mining association Rules. Journal of Data Mining and Knowledge Discovery, Vol 8, No 1, pp.25-51. [CrossRef] [Google Scholar]
  2. Forman, E.H., 1993. Facts and fictions about the analytic hierarchy process. Mathematical and Computer Modelling, Volume 17, Issues 4–5, pp.19-26. [CrossRef] [Google Scholar]
  3. Fournier-Viger, P., Gomariz, Gueniche, T., A., Soltani, A., Wu., C., Tseng, V. S. 2014. SPMF: a Java Open-Source Pattern Mining Library. Journal of Machine Learning Research (JMLR) 15, pp. 3389-3393. [Google Scholar]
  4. Han, J., Pei, J., Yin, Y. & Mao, R., 2004. Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge Discovery 8, pp.53–87. [CrossRef] [Google Scholar]
  5. Heydari, A., Tavakoli, M.A., Salim, N., & Heydari, Z., 2015. Detection of review spam: A survey. Expert Systems with Applications, 42(7), pp.3634–42. [CrossRef] [Google Scholar]
  6. Jindal, N., & Liu, B. 2008. Opinion Spam and Analysis. Proceedings WSDM ‘08 Proceedings of the 2008 International Conference on Web Search and Data Mining, 219-230. [Google Scholar]
  7. Khan, K., Baharudin, B., Khan, A., & Ullah, A., 2014. Mining opinion components from unstructured reviews: A review. Journal of King Saud University - Computer and Information Sciences, 26(3), pp.258–75. [CrossRef] [Google Scholar]
  8. Leskovec, J., Rajaraman, A. & Ullman, J.D., 2011. Mining of Massive Data Sets. Cambridge University Press. [Google Scholar]
  9. Liu, B., 2009. Opinion Mining. Encyclopedia of Database System, pp.1986–90. [Google Scholar]
  10. Liu, B., 2012. Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers. [Google Scholar]
  11. McAuley, J., & Leskovec, J. 2013. Hidden Factors and Hidden Topics : Understanding Rating Dimensions with Review Text. Proceeding RecSys ’13 Proceeding of the 7th ACM conference on Recommender Systems, 165-172. [Google Scholar]
  12. Pang, B. & Lee, L., 2008. Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval Vol. 2, No 1-2, pp.1-135. [CrossRef] [Google Scholar]
  13. Ravi, K. & aRavi, V., 2015. A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowledge-Based Systems, 89, pp.14-46. [CrossRef] [Google Scholar]
  14. Sandhya, N., Lalitha, Y.S., Govardhan, A. & Anuradha, K., 2008. Analysis of Similarity Measures for Text Clustering. CSC Journals 2. [Google Scholar]
  15. Savage, D., Zhang, X., Yu, X., Chou, P., Wang, Q., 2015. Detection of opinion spam based on anomalous rating deviation. Expert Systems with Applications, 42(22), pp.8650–57. [CrossRef] [Google Scholar]
  16. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C., 2013. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. Proceedings of the conference on empirical methods in natural language processing (EMNLP). Vol. 1631, 1642. [Google Scholar]
  17. Wang, G., Xie, S., Liu, B., & Yu, P.S 2011. Review Graph Based Online Store Review Spammer Detection. Proceeding ICDM ‘11 Proceedings of the 2011 IEEE 11th International Conference on Data Mining, 1242-1247. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.