Open Access
MATEC Web of Conferences
Volume 57, 2016
4th International Conference on Advancements in Engineering & Technology (ICAET-2016)
Article Number 04003
Number of page(s) 6
Section Food & Agriculture Engineering
Published online 11 May 2016
  1. Singh, S., 2014. Production and characterization of industrially important amylase enzyme by Aspergillus niger using different combination of starch waste as substrate. International Journal of Chemical and Pharmaceutical Sciences. 5(2), 85-89. [Google Scholar]
  2. Markou, G., Georgakakis, D., 2011. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Applied Energy. 88, 3389–3401 [CrossRef] [Google Scholar]
  3. Federici F., Fava F., Kalogerakis N., Mantzavinosc D (2009) Valorisation of agro-industrial by-products, effluents and waste: concept, opportunities and the case of olive mill wastewaters. J Chem Technol Biotechnol 84(6):895–900. [CrossRef] [Google Scholar]
  4. Lee, B.H., Kim, H.J., Yu, W.R., 2009. Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties. Fibers and Polymers. 10(1), 83–90. [CrossRef] [Google Scholar]
  5. Yoon J.S., Sung A.J., Kyung B.S., (2011) Preparation and Mechanical Properties of Rice Bran Protein Composite Films Containing Gelatin or Red Algae. Food Sci. Biotechnol 20(3):703-707. [CrossRef] [Google Scholar]
  6. Raquez, J.M., Deleglise, M., Lacrampe, M.F., Krawczak, P., 2010. Thermosetting (bio) materials derived from renewable resources: A critical review. Prog Polym Sci. 35, 487–509 [CrossRef] [Google Scholar]
  7. Jan, K., Riar, C.S., Saxena, D.C., 2015. Engineering and functional properties of biodegradable pellets developed from various agro-industrial wastes using extrusion technology. J Food Sci Technol 52(12), 7625-7639. [CrossRef] [Google Scholar]
  8. Simone, M., Leal, R., Evelise, F.S., Carlos, A.F., Sonia, M.B.N., 2009. Studies on the Properties of Rice-Husk-Filled-PP Composites – Effect of Maleated PP. Mat. Res 12(3), 333-338. [CrossRef] [Google Scholar]
  9. Wu, Q., Sakabe, H., Isobe, S., 2003. Processing and properties of low cost corn gluten meal/wood fiber composite. Ind. Eng. Chem. Res. 42(26), 6765–73. [Google Scholar]
  10. AOAC. (1995) Official methods of analysis. U.S.A. Assoc of Official Anal Chem, Washington. [Google Scholar]
  11. Anderson, R.A., Conway, H.F., Pfeifer, V.F., Griffin, E.L., 1969. Gelatinization of corn grits by roll and extrusion cooking. Cereal Sci. Today, 14, 4 [Google Scholar]
  12. Schettini, E., Santagata, G., Malinconico, M., Immirzi, B., Mugnozza, G.S., Vox, G., 2013. Recycled wastes of tomato and hemp fibres for biodegradable pots: Physico-chemical characterization and field performance. Resources, Conservation and Recycling. 70, 9– 19. [CrossRef] [Google Scholar]
  13. Rosentrater, K.A., Muthukumarappan, K., Kannadhason, S., 2009. Effects of ingredients and extrusion parameters on aquafeeds containing DDGS and potato starch. J. Aquacult. Feed Sci. Nutr. 1(1), 22-38. [Google Scholar]
  14. Razzaq, M.R., Anjum, F.M., Khan, M.I., Khan, M.R., Nadeem, M., Javed, M. S., Sajid, M.W., 2012. Effect of temperature, screw speed and moisture variations on extrusion cooking behavior of Maize (Zea mays. L). Pak. J. Food Sci. 22(1), 12-22. [Google Scholar]
  15. Cain, J., 2002. An alternative technique for determining ANSI/CEMA standard 550 flowability ratings for granular materials. Powder Handling and Processing, 14(3), 218–220. [Google Scholar]
  16. Olajide, J.O., Igbeka, J.C., 2003. Some physical properties of groundnut kernels. J. Food Eng. 58, 201–204 [CrossRef] [Google Scholar]
  17. BSI. (2010). EN 15210–15211:2009- solid biofuels-determination of mechanical durability of pellets and briquettes. British Standards Institution, London. [Google Scholar]
  18. BSI., (2010). EN 15210–15211:2009- solid biofuels-determination of mechanical durability of pellets and briquettes. British Standards Institution, London. [Google Scholar]
  19. Nalladurai, K, Morey, V.R., 2009. Factors affecting strength and durability of densified biomass products. Biomass Bioenerg. 33(3), 337–359 [Google Scholar]
  20. Gontard, N., Guilbert, S., Cuq, J.L., 1993. Water and glycerol as plasticizer affect mechanical and water vapor barrier properties of an edible wheat gluten film. J Food Sci 58(1), 206–211. [CrossRef] [Google Scholar]
  21. Gennadios, A., Weller, C.L., 1994. Moisture adsorption by grain protein films. Transactions of ASAE, 37(2), 535–539. [CrossRef] [Google Scholar]
  22. Shaw, N.B., Monahan, F.J., O’Riordan, E. D., O’Sullivan, M., 2002. Physical properties of WPI films plasticized with glycerol, xylitol, or sorbitol. J. Food Sci. 67(1), 164–167. [CrossRef] [Google Scholar]
  23. Parisa, F., Kurt, A.R., Kasiviswanathan, M., Mehmet, T., 2013. Effects of Steam, Moisture, and Screw Speed on Physical Properties of DDGS-Based Extrudates. Cereal Chem. 90(3), 186-197. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.