Open Access
MATEC Web of Conferences
Volume 56, 2016
2016 8th International Conference on Computer and Automation Engineering (ICCAE 2016)
Article Number 01007
Number of page(s) 12
Section Computer and Information technologies
Published online 26 April 2016
  1. D. Turo, B. Johnson, “Improving the visualization of hierarchies with treemaps: design issues and experimentation.” Proceedings of the 3rd conference on Visualization ‘92, 124–131 (1992) [Google Scholar]
  2. H. Lü, J. Fogarty, “Cascaded treemaps: examining the visibility and stability of structure in treemaps.” Proceedings of graphics interface 2008., (2008) [Google Scholar]
  3. D. Urribarri, S. M. Castro, S. Martig. “Gyrolayout: A Hyperbolic. Level-of-Detail. Tree Layout.” Journal of universal computer science, 19.1, 132–156, (2013) [Google Scholar]
  4. G. G. Robertson, J. D. Mackinlay, S. K. Card, “Cone trees: animated 3D visualizations of hierarchical information.” Proceedings of the SIGCHI conference on Hu-man factors in computing systems., 189–194 (1991) [Google Scholar]
  5. D. E. Knuth, The. Art of Computer. Programming (Addison-Wesley, Reading, MA, 1968) Chapter1 [Google Scholar]
  6. Q. V. Nguyen, M. L. Huang, “EncCon: an approach to constructing interactive visualization of large hierarchical data.” Information Visualization, 4.1, 1–21(2005) [CrossRef] [Google Scholar]
  7. M. J. McGuffin, R. Balakrishnan, Interactive “Visualization of Genealogical Graphs” Proc. IEEE Symp. Information. Visualization, 16–23 (2005) [Google Scholar]
  8. C. Buchheim, M. Jünger, S. Leipert, “Improving. Walker’s algorithm to run in linear time.” Graph. Drawing, 344–353 (2002) [CrossRef] [Google Scholar]
  9. E. M. Reingold, J. S. Tilford, “Tidier drawings of trees.” IEEE Transactions on Software Engineering, 2, 223–228 (1981) [CrossRef] [Google Scholar]
  10. J. Q. Walker, “A node-positioning algorithm for general trees.” Software: Practice and Experience, 20, 685–705 (1990) [CrossRef] [Google Scholar]
  11. K. Marriott, P. Sbarski, “Compact layout of layered trees.” Proceedings of the thirtieth Australasian conference on Computer science, 62, 7–14 (2007) [Google Scholar]
  12. A. Bloesch, “Aesthetic layout of generalized trees.” Software: Practice and Experience, 23, 817–827 (1993) [CrossRef] [Google Scholar]
  13. M. Hasan, Md. S. Rahman, T. Nishizeki, “A linear algorithm for compact box-drawings of trees.” Networks, 42.3, 160–164 (2003) [CrossRef] [Google Scholar]
  14. Y. Miyadera, K. Anzai, H. Unno, T. Yaku, “Depthfirst layout algorithm for trees.” Information Processing Letters, 66, 187–194 (1998) [CrossRef] [Google Scholar]
  15. B. Stein, F. Benteler, “On the generalized boxdrawing of trees: Survey and new technology.” Proceeding of I-KNOW ‘07, (2007) [Google Scholar]
  16. L. Xiaohong, H. Jingwei, “An improved generalized tree layout algorithm.” Proceedings of the 2nd InterNational Asia Conference on Informatics in Control, Automation and Robotics, 2, 163–166 (2010) [Google Scholar]
  17. A. Ploeg, “Drawing non-layered tidy trees in linear time.” Software: Practice and Experience, 44.12, 1467–1484 (2014) [CrossRef] [Google Scholar]
  18. S. Cornelsen, T. Schank, D. Wagner, “Drawing graphs on two and three lines.” Graph. Drawing, 31–41 (2002) [CrossRef] [Google Scholar]
  19. M. Suderman, “Pathwidth and layered drawings of trees.” International Journal of Computational Geometry & Applications, 14.03, 203–225 (2004) [CrossRef] [Google Scholar]
  20. M. J. Alam, Md. A. H. Samee, M. Rabbi, Md. S. Rahman, “Minimum-Layer. Upward Drawings of Trees.” Journal of Graph Algorithms and Applications, 14.2, 245–267 (2010) [CrossRef] [Google Scholar]
  21. D. Mondal, M. J. Alam, Md. S. Rahman, “Minimumlayer drawings of trees.” WALCOM: Algorithms and Computation, 221–232 (2011) [CrossRef] [Google Scholar]
  22. P. Scheffler, “A linear algorithm for the pathwidth of trees.” Topics in combinatorics and graph theory, (Physica-Verlag HD, 1990) 613–620 [CrossRef] [Google Scholar]
  23. R. Tamassia(editor), “Handbook of Graph. Drawing and Visualization.” (CRC Press, 2013) 160 [Google Scholar]
  24. P. Crescenzi, G. Di Battista, A. Piperno, “A note on optimal area algorithms for upward drawings of binary trees.” Comput. Geom. Theory Appl., 2, 187–200 (1992) [CrossRef] [Google Scholar]
  25. J. Lamping, R. Rao, “Laying out and visualizing large trees using a hyperbolic space.” Proceedings of the 7th annual ACM symposium on User interface software and technology, 13–14 (1994) [Google Scholar]
  26. J. Lamping, R. Rao, P. Pirolli, “A focus+context technique based on hyperbolic geometry for visualizing large hierarchies.” Proceedings of the SIGCHI conference on Human factors in computing systems, 401–408 (1995) [Google Scholar]
  27. K. Sugiyama, S. Tagawa, M. Toda, “Methods for Visual. Understanding of Hierarchical. System Structures.” IEEE Trans. Systems, Man, and Cybernetics, 11.2, 109–125 (1981) [CrossRef] [Google Scholar]
  28. C. Bachmaier, “A radial adaptation of the Sugiyama framework for visualizing hierarchical information.” IEEE Transactions on Visualization and Computer Graphics, 13.3, 583–594 (2007) [CrossRef] [Google Scholar]
  29. C. A. Duncan, D. Eppstein, M. T. Goodrick, S. G. Kobourov, M. Nollenburg, “Drawing trees with perfect angular resolution and polynomial area.”, Graph. Drawing, 183–194 (2010) [Google Scholar]
  30. C. A. Duncan, D. Eppstein, M. T. Goodrick, S. G. Kobourov, M. Nollenburg, “Lombardi drawings of graphs.” Graph. Drawing, 195–207 (2010) [Google Scholar]
  31. A. Rusu, A. Crowell, B. Petzinger, A. Fabian, “PieVis: Interactive. Graph Visualization. Using a Rings-Based. Tree Drawing. Algorithm for Children and Crust. Display for Parents.” Proc. IEEE Info. Vis ‘11, 465–470 (2011) [Google Scholar]
  32. P. Eades, “A heuristic for graph drawing”, Congressus. Nutnerantiunt, 42, 149–160 (1984) [Google Scholar]
  33. T. M. J. Fruchterman, E. M. Reingold. “Graph drawing by force-directed placement.” Softw., Pract. Exper., 21.11, 1129–1164 (1991) [Google Scholar]
  34. T. Dwyer, Y. Koren, K. Marriott, “Drawing directed graphs using quadratic programming.” IEEE Transactions on Visualization and Computer. Graphics, 12.4, 536–548 (2006) [CrossRef] [Google Scholar]
  35. M. Bohanec, “DEXiTree: A program for pretty drawing of trees.” Proc. Information. Society IS 2007, 8–11(2007) [Google Scholar]
  36. T. Dwyer, K. Marriott, P. Sbarski. “Hi-tree layout using quadratic programming.” Diagrammatic. Representation and Inference (Springer. Berlin Heidelberg, 2010) 212–219 [CrossRef] [Google Scholar]
  37. R. Chernobelskiy, K. Cunningham, M. T. Goodrich, S. G. Kobourov, L. Trott, “Force-directed lombardistyle graph drawing.” Graph. Drawing, 78–90 (2011) [Google Scholar]
  38. M. L. Huang, J. Liang, Q. V. Nguyen, “A visualization approach for frauds detection in financial market.” Proc. IEEE Info. Vis ‘09, 197–202 (2009) [Google Scholar]
  39. L. Jin, D. C. Banks, “Tennisviewer: A browser for competition trees.” IEEE Computer. Graphics and Applications, 17.4, 63–65 (1997) [CrossRef] [Google Scholar]
  40. D. Turo, “Hierarchical visualization with treemaps: making sense of pro basketball data.” CHI ‘94 Conference Companion on Human. Factors in Computing. Systems, 441–442 (1994) [Google Scholar]
  41. B. B. Bederson, “Quantum treemaps and bubblemaps for a zoomable image browser.” Proc. User. Interface Systems and Technology, 71–80 (2001) [Google Scholar]
  42. A. Fiore, M. Smith, “Treemap. Visualizations of Newsgroups.” Technical Report, Microsoft Research, Microsoft.Corporation, Redmond, WA (2001) [Google Scholar]
  43. M. Smith, “Tools for Navigating. Large Social Cyberspaces.” Communications of the ACM, 45.4, 51–55 (2002) [CrossRef] [Google Scholar]
  44. B. Shneiderman, “Tree visualization with tree-maps: 2-d space-filling approach.” ACM Transactions on graphics, 11.1, 92–99 (1992) [CrossRef] [Google Scholar]
  45. B. Johnson, B. Shneiderman. “Tree-maps: A spacefilling approach to the visualization of hierarchical information structures.” Proc. IEEE Visualization ‘91, 284–291 (1991) [CrossRef] [Google Scholar]
  46. M. Wattenberg, “Visualizing the stock market.” CHI’99 extended abstracts on Human factors in computing systems (1999) [Google Scholar]
  47. J. J. VanWijk, H. Van de Wetering, “Cushion treemaps: Visualization of hierarchical information.” Proc. IEEE Info. Vis ‘99, 73–78 (1999) [Google Scholar]
  48. M. Bruls, K. Huizing, J. J. VanWijk. “Squarified treemaps.” Data. Visualization 2000, 33–42 (2000) [CrossRef] [Google Scholar]
  49. B. Shneiderman, M. Wattenberg, “Ordered treemap layouts.” Proc. IEEE Info. Vis ‘01, 73–78 (2001) [Google Scholar]
  50. J. Heer, G. G. Robertson, “Animated transitions in statistical data graphics.” IEEE Transactions on Visualization and Computer Graphics, 13.6, 1240–1247 (2007) [Google Scholar]
  51. B. B. Bederson, B. Shneiderman, M. Wattenberg, “Ordered and quantum treemaps: Making effective use of 2D space to display hierarchies.” ACM Transactions on Graphics, 21.4, 833–854 (2002) [CrossRef] [Google Scholar]
  52. J. Liang, M. L. Huang, “Highlighting in information visualization: A survey.” Proc. IEEE Info. Vis ‘10, 79–85 (2010) [Google Scholar]
  53. 15. J. Liang, Q. V. Nguyen, S. Simoff, M. L. Huang, “Angular. Treemaps-A New. Technique for Visualizing and Emphasizing. Hierarchical Structures.” Proc. IEEE Info. Vis ‘12, 74–80 (2012) [Google Scholar]
  54. M. Balzer, O. Deussen, “Voronoi. Treemaps.” Proc. IEEE Info. Vis ‘05, 49–56 (2005) [Google Scholar]
  55. M. Balzer, O. Deussen, C. Lewerentz, “Voronoi treemaps for the visualization of software metrics.” Proc. ACM SoftVis ‘05, 165–172 (2005) [Google Scholar]
  56. Q. Du, V. Faber, M. Gunzburger, “Centroidal. Voronoi tessellations: applications and algorithms.” SIAM review, 41.4, 637–676 (1999) [Google Scholar]
  57. A. Sud, D. Fisher, H. Lee, “Fast. Dynamic Voronoi. Treemaps.” Proc. IEEE InterNational Symposium on Science and Engineering ‘10, 85–94 (2010) [Google Scholar]
  58. Y. Tu, H. Shen, “Visualizing changes of hierarchical data using treemaps.” IEEE Transactions on Visualization and Computer Graphics, 13.6, 1286–1293 (2007) [CrossRef] [Google Scholar]
  59. J. Liang, S. Simeon, Q. V. Nguyen, M. L. Huang, “Visualizing large trees with divide & conquer partition.” Proceedings of the 6th InterNational Symposium on Visual. Information Communication and Interaction, 79–87 (2013) [Google Scholar]
  60. J. Liang, Q. V. Nguyen, S. Simoff, M. L. Huang, “Divide and Conquer treemaps: Visualizing large trees with various shapes.” Journal of Visual Languages & Computing, 31, 104–127 (2015) [CrossRef] [Google Scholar]
  61. S. Tak, A. Cockburn, “Enhanced spatial stability with Hilbert and Moore treemaps.” IEEE Transactions on Visualization and Computer Graphics, 19.1, 141–148 (2013) [CrossRef] [Google Scholar]
  62. J. Hao, K. Zhang, M. L. Huang, “RELT–visualizing trees on mobile devices.” Advances in Visual Information Systems (Springer. Berlin Heidelberg, 2007) 344–357 [CrossRef] [Google Scholar]
  63. J. Hao, C. A. Gabrysch, C. Zhao, Q. Zhu, K. Zhang, “Visualizing and Navigating. Hierarchical Information on Mobile. User Interfaces.” International Journal of Advanced Intelligence, 2.1, 81–103 (2010) [Google Scholar]
  64. H. Shin, G. Park, J. Han, “Tablorer–An Interactive. Tree Visualization. System for Tablet PCs.” Proceedings of the 13th Eurographics, 30.3 1131–1140 (2011) [Google Scholar]
  65. S. Zhao, M. J. McGuffin, M. H. Chignell, “Elastic hierarchies: Combining treemaps and node-link diagrams.” Proc. IEEE Info. Vis ‘05, 57–64 (2005) [Google Scholar]
  66. K. Marriott, P. Sbarski, T. V. Gelder, D. Prager, A. Bulka, “Hi-trees and their layout.” IEEE Transactions on Visualization and Computer. Graphics, 17.3 290–304 (2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.