Open Access
MATEC Web of Conferences
Volume 53, 2016
International Scientific Conference Week of Science in SPbPU – Civil Engineering (SPbWOSCE-2015)
Article Number 01008
Number of page(s) 13
Section Engineering and Technology
Published online 15 April 2016
  1. C. Gogu, R. Hatìkat, Introduction to the Bayesian Approach Applied to Elastic Constants Identification. AIAA JOURNAL 48 5 (2010) [CrossRef] [Google Scholar]
  2. J.J. Moré, and D.C. Sorensen, Computing a Trust Region Step. SIAM Journal on Scientific and Statistical Computing 3 553–572 (1983) [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Idier, Bayesian Approach to Inverse Problems 392 (Wiley-ISTE, Paris, 2008) [Google Scholar]
  4. Alberto Corigliano, Alberto Taliercio, Meccanica Computazionale: Soluzione del Problematico Elastico Lineare (Esculapio Editore, Italy, 2006) [Google Scholar]
  5. The MathWorks. Optimization Toolbox: User Guide 634 (Natick, 2015) [Google Scholar]
  6. J. E. Dennis, J. M. Jorge, Quasi Newton Methods, Motivation and Theory. SIAM Review 19 46–89 (1977) [CrossRef] [Google Scholar]
  7. T. Marwala, S. Sibisi, Finite Element Model Updating Using Bayesian Framework and Modal Properties. Journal of Aircraft 42 275–278 (2005) [CrossRef] [Google Scholar]
  8. K. F Alvin, Finite element model update via Bayesian Estimation and minimization of dynamic residuals. AIAA Journal 35 879–886 (1997) [CrossRef] [Google Scholar]
  9. C Gogu, Facilitating Bayesian Identification of Elastic Constants through Dimensionality reduction and response surface methodology. Ph.D. Dissertation. University of Florida. Gainesville, FL, and Ecole des Mines de Saint Etienne (France, 2009) [Google Scholar]
  10. M. S. Agbabian, S. E Masri, R. K. Miller, T. K. Caughey, System identification approach to detection of structural changes. J. Engrg. Mech., ASCE 117(2) 370–390 (1991) [CrossRef] [Google Scholar]
  11. M. R. Banan, K. D. Hjelmstad, Parameter estimation of structure from static response I. Computational aspects. J. Struct. Engrg., ASCE 120(11) 3242–3258 (1994) [Google Scholar]
  12. M. R. Banan, K. D. Hjelmstad, Parameter estimation of structures from static response. II. Numerical simulation studies. J. Struct. Engrg., ASCE 120(11) 3259–3283 (1994) [CrossRef] [Google Scholar]
  13. M. Baruch, I. Y. Bar-Itzhack, Optimal weighted orthogonalization of measured modes. AIM J 16(4) 346–351 (1978) [Google Scholar]
  14. A. Bjorck, Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (Philadelphia, 1996) [Google Scholar]
  15. C.L. Lawson, R. J Hanson, Solving Leàst Squares Problems (NJPrentice Hall, Englewood Cliffs, 1974) [Google Scholar]
  16. A. Tarantola, Inverse. Problem Theory and Model Parameter Estimation. Society for Industrial and Applied Mathematics (Philadelphia, 2005) [Google Scholar]
  17. J. Isenberg, Progressing from Least-Squares to Bayesian Estimation. Proceedings of the ASME Design Engineering Technical Conferences 71–82 (American Society of Mechanical Engineers. New York, 1979) [Google Scholar]
  18. O.C. Zienkiewicz, R.L. Taylor, The Finite Element Metod for Solid and Structural Mechanics (Butterworth-Heinemann, 2013) [Google Scholar]
  19. A. Munjiza, E. Rougier, E. E. Knight, Large Strain Finite Element Method: A Practical Course (Wiley, 2015) [Google Scholar]
  20. S. S. Rao, The Finite Element Method in Engineering (Butterworth-Heinemann, 2010) [Google Scholar]
  21. A.J.M. Ferreira, MATLAB Codes for Finite Element analysis. Solids and Structures (Portugal, 2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.