Open Access
MATEC Web of Conferences
Volume 49, 2016
2016 6th International Conference on Chemistry and Chemical Process (ICCCP 2016)
Article Number 09001
Number of page(s) 5
Section Biomechanics
Published online 19 April 2016
  1. D.Burr, C.Milgrom, D.Fyhrie, M.Forwood, M.Nyska, A.Finestone, et al., In vivo measurement of human tibial strains during vigorous activity, Bone, 18, 405–410 (1996) [CrossRef] [Google Scholar]
  2. C.Milgrom, A.Finestone, A.Hamel, V.Mandes, D.Burr, N.Sharkey, A comparison of bone strain measurements at anatomically relevant sites using surface gauges versus strain gauged bone staples, Journal of biomechanics, 37, 947–952 (2004) [CrossRef] [Google Scholar]
  3. M. J.Silva, M. D.Brodt, W. J.Hucker, Finite element analysis of the mouse tibia: Estimating endocortical strain during three‐point bending in SAMP6 osteoporotic mice, The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 283, 380–390 (2005) [CrossRef] [Google Scholar]
  4. H.Gao, Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials, International Journal of Fracture, 138, 101–137 (2006) [Google Scholar]
  5. L. J.Gibson, The mechanical behaviour of cancellous bone, Journal of biomechanics, 18, 317–328 (1985) [CrossRef] [Google Scholar]
  6. S. C.Cowin, Bone mechanics handbook, (2001) [Google Scholar]
  7. P. D.Delmas, R. P.Tracy, B. L.Riggs, K. G.Mann, Identification of the noncollagenous proteins of bovine bone by two-dimensional gel electrophoresis, Calcified tissue international, 36, 308–316 (1984) [CrossRef] [Google Scholar]
  8. A.Sharir, M. M.Barak, R.Shahar, Whole bone mechanics and mechanical testing, The Veterinary Journal, 177, 8–17 (2008) [CrossRef] [Google Scholar]
  9. J. D.Currey, The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone, Journal of biomechanics, 21, 131–139 (1988) [CrossRef] [Google Scholar]
  10. S.Suresh, Graded materials for resistance to contact deformation and damage, Science, 292, 2447–2451 (2001) [CrossRef] [PubMed] [Google Scholar]
  11. D. G.Steele, C. A.Bramblett, The anatomy and biology of the human skeleton: Texas A&M University Press, (1988) [Google Scholar]
  12. Y.-C.Fung, P.Tong, Classical and computational solid mechanics vol. 1: World scientific, (2001) [CrossRef] [Google Scholar]
  13. H.Davies, The timing and distribution of strains around the surface of the midshaft of the third metacarpal bone during treadmill exercise in one Thoroughbred racehorse, Australian veterinary journal, 83, 157–162 (2005) [CrossRef] [Google Scholar]
  14. C.Bitsakos, J.Kerner, I.Fisher, A. A.Amis, The effect of muscle loading on the simulation of bone remodelling in the proximal femur, Journal of biomechanics, 38, 133–139 (2005) [CrossRef] [Google Scholar]
  15. A.Palevski, I.Glaich, S.Portnoy, E.Linder-Ganz, A.Gefen, Stress relaxation of porcine gluteus muscle subjected to sudden transverse deformation as related to pressure sore modeling, Journal of biomechanical engineering, 128, 782–787 (2006) [CrossRef] [Google Scholar]
  16. Y.Zheng, A. F.Mak, Effective elastic properties for lower limb soft tissues from manual indentation experiment, Rehabilitation Engineering, IEEE Transactions on, 7, 257–267 (1999) [Google Scholar]
  17. A. G.Robling, D. B.Burr, C. H.Turner, Recovery periods restore mechanosensitivity to dynamically loaded bone, Journal of Experimental Biology, 204, 3389–3399 (2001) [Google Scholar]
  18. C. T.Rubin, L. E.Lanyon, Regulation of bone mass by mechanical strain magnitude, Calcified tissue international, 37, 411–417 (1985) [CrossRef] [Google Scholar]
  19. P.Ammann, R.Rizzoli, Bone strength and its determinants, Osteoporosis International, 14, 13–18, (2003) [CrossRef] [Google Scholar]
  20. S. J.Warden, J. A.Hurst, M. S.Sanders, C. H.Turner, D. B.Burr, J.Li, Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance, Journal of bone and mineral research, 20, 809–816 (2005) [CrossRef] [Google Scholar]
  21. N. E.Lane, W.Yao, M.Balooch, R. K.Nalla, G.Balooch, S.Habelitz, et al., Glucocorticoid‐Treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo‐Treated or estrogen‐deficient mice, Journal of bone and mineral research, 21, 466–476 (2006) [CrossRef] [Google Scholar]
  22. S.Judex, X.Lei, D.Han, C.Rubin, Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude, Journal of biomechanics, 40, 1333–1339 (2007) [CrossRef] [Google Scholar]
  23. E.Linder-Ganz, N.Shabshin, Y.Itzchak, and A.Gefen, Assessment of mechanical conditions in sub-dermal tissues during sitting: A combined experimental-MRI and finite element approach,” Journal of biomechanics, 40, 1443–1454 (2007) [Google Scholar]
  24. J.Katz, The biophysical and biomechanical properties of bone, bone-mineral and some synthetic bone biomaterials, bulletin de la Société chimique de France, 514–518 (1985) [Google Scholar]
  25. J.Nowinski, C.Davis, The flexure and torsion of bones viewed as anisotropic poroelastic bodies, International Journal of Engineering Science, 10, 1063–1079 (1972) [CrossRef] [Google Scholar]
  26. R. B.Bach, D.Burr, N. A.Sharkey, Skeletal tissue mechanics: Springer Science & Business Media, (2013) [Google Scholar]
  27. J. C.Lotz, T. N.Gerhart, W. C.Hayes, Mechanical properties of metaphyseal bone in the proximal femur, Journal of biomechanics, 24, 317–329 (1991) [CrossRef] [Google Scholar]
  28. F. E.Zajac, Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control, Critical reviews in biomedical engineering, 17, 359–411 (1988) [Google Scholar]
  29. M.Doblaré, J.Garcıa, M.Gómez, Modelling bone tissue fracture and healing: a review, Engineering Fracture Mechanics, 71, 1809–1840 (2004) [CrossRef] [Google Scholar]
  30. D. M.Cullinane, T. A.Einhorn, Biomechanics of bone, Principles of bone biology, 1, 17–32 (2002) [CrossRef] [Google Scholar]
  31. D. T.Reilly, A. H.Burstein, The elastic and ultimate properties of compact bone tissue, Journal of biomechanics, 8, 393–405 (1975) [CrossRef] [PubMed] [Google Scholar]
  32. S.Pietruszczak, D.Inglis, G.Pande, A fabric-dependent fracture criterion for bone, Journal of biomechanics, 32, 1071–1079 (1999) [CrossRef] [Google Scholar]
  33. M.Zhang, Y.Zheng, A. F.Mak, Estimating the effective Young’s modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation, Medical engineering & physics, 19, 512–517 (1997) [Google Scholar]
  34. T. J.Hughes, The finite element method: linear static and dynamic finite element analysis: Courier Corporation, (2012) [Google Scholar]
  35. J.-Y.Rho, L.Kuhn-Spearing, P.Zioupos, Mechanical properties and the hierarchical structure of bone, Medical engineering & physics, 20, 92–102 (1998) [Google Scholar]
  36. T.Gardnera, T.Stoll, L.Marks, S.Mishra, M. K.Tate, The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracture—an FEM study, Journal of biomechanics, 33, 415–425 (2000) [CrossRef] [Google Scholar]
  37. V. K.Goel, S. A.Ramirez, W.Kong, L. G.Gilbertson, Cancellous bone Young’s modulus variation within the vertebral body of a ligamentous lumbar spine—application of bone adaptive remodeling concepts, Journal of biomechanical engineering, 117, 266–271 (1995) [CrossRef] [Google Scholar]
  38. B.Van Rietbergen, R.Huiskes, F.Eckstein, and P.Rüegsegger, Trabecular bone tissue strains in the healthy and osteoporotic human femur, Journal of Bone and Mineral Research, 18, 1781–1788 (2003) [CrossRef] [Google Scholar]
  39. B.Van Rietbergen, A.Odgaard, J.Kabel, R.Huiskes, Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture, Journal of biomechanics, 29, 1653–1657 (1996) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.