Open Access
Issue
MATEC Web of Conferences
Volume 44, 2016
2016 International Conference on Electronic, Information and Computer Engineering
Article Number 01039
Number of page(s) 4
Section Computer, Algorithm, Control and Application Engineering
DOI https://doi.org/10.1051/matecconf/20164401039
Published online 08 March 2016
  1. Jafri, R., Arabnia, H. R. A survey of face recognitiontechniques. Jips, 11 (19) (2009) 29–33 [Google Scholar]
  2. Turk, M., Pentland, A, Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3 (1) (2007) 71–86 [Google Scholar]
  3. Belhumeur, P. N., Hespanha, J. P., Kriegman, D. J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19 (7) (1997) 711–720 [Google Scholar]
  4. Chien, J. T., Wu, C. C, Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24 (12) (2002) 1644–1649 [CrossRef] [Google Scholar]
  5. Fidler, S., Sko aj, D., Leonardis, A. Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28 (3) (2006) 337–350 [CrossRef] [Google Scholar]
  6. J.Wright, A.Y.Yang, A.Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse representation, IEEE Trans. on Pattern Analysis and Machine Intelligence, 31 (2) (2009) 210–227 [Google Scholar]
  7. B. Cheng, J. Yang, S. Yan, Y. Fu, and T. Huang. Learning with 11-graph for image analysis. IEEE Trans. Image Processing, 19 (4) (2010) 858–866 [CrossRef] [Google Scholar]
  8. S. Gao, I. Tsang, L. Chia, Kernel sparse representation for image classification and face recognition. In ECCV, 6314 (2010) 1–14 [Google Scholar]
  9. M. Yang, L. Zhang. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In ECCV, 6316 (2010) 448–461. [Google Scholar]
  10. M. Yang, L. Zhang, J. Yang, D. Zhang. Robust sparse coding for face recognition. IEEE, 42 (7) (2011) 625–632 [Google Scholar]
  11. Naseem, I., Togneri, R., Bennamoun, M. Linear regression for face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 32 (11) (2010) 2106–2112. [CrossRef] [Google Scholar]
  12. X. Luan, B. Fang, Face recognition with contiguous occlusion using linear regression and level set method. Neurocomputing, 122 (2013) 386–397 [CrossRef] [Google Scholar]
  13. X. Luan, B. Fang, Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion. Pattern Recognition, 47 (2) (2014) 495–508 [CrossRef] [Google Scholar]
  14. L. Zhang, M. Yang, X. Feng, Sparse representation or collaborative representation: Which helps face recognition? Proceedings of the 2011 International Conference on Computer Vision IEEE Computer Society, (2011) 471–478 [Google Scholar]
  15. A. Georghiades, P. Belhumeur, D. Kriegman, From few to many: Illumination cone models for face recognition under variable lighting and pose, IEEE Trans. on Pattern Analysis and Machine Intelligence, 23 (2001) 643–660 [Google Scholar]
  16. A. Martinez, R. Benavente, The AR face database, CVC Tech. Report. 24, 1998. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.