Open Access
Issue
MATEC Web of Conferences
Volume 22, 2015
International Conference on Engineering Technology and Application (ICETA 2015)
Article Number 01005
Number of page(s) 6
Section Information and Communication Technology
DOI https://doi.org/10.1051/matecconf/20152201005
Published online 09 July 2015
  1. 5G vision and requirements of 5G forum, Korea, presented at the ITUR 2020 Vision Workshop 5G Forum Korea, Ho Chi Minh, Vietnam, Feb. 2014 [Google Scholar]
  2. Wang C X, Haider F. & Gao X Q, et al. 2014. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag., 52: 122–130. [CrossRef] [Google Scholar]
  3. 3GPP. 2010. Physical Channels and Modulation (Release 11). 3GPP TS36.211. [Google Scholar]
  4. Marzetta T L. 2006. How Much training is required for multiuser MIMO? In: Proceedings of the 40th Asilomar Conference on Signals, Systems, & Computers, Pacific Grove, 359–363 [Google Scholar]
  5. V. Jungnickel et al. 2014. The role of small cells coordinated multipoint, and massive MIMO in 5G, IEEE Communications Magazine, 52 (5). [CrossRef] [Google Scholar]
  6. Frederick W.Vook, Amitava Ghosh. & Timothy A Thomas. MIMO and Beamforming Solutions for 5G Technolog. Microwave Symposium(IMS), 2014 IEEE MTT-S International, pp: 1–4 [Google Scholar]
  7. W. H. Chin, Z. Fan, and R. Haines, 2014. Emerging technologies and research challenges for 5G wireless networks, IEEE Wireless Commun., 21: 106–112. [CrossRef] [Google Scholar]
  8. Osseiran A, Braun V, Hidekazu T, et al. 2013. The foundation of the mobile and wireless communications system for 2020 and beyond: Challenges, enablers and technology solutions. In: Proceedings of IEEE Vehicular Technology Conference (VTC Spring), pp: 1–5 [Google Scholar]
  9. Galiotto C, Marchetti N. & Doyle L. 2012. Flexible spectrum sharing and interference coordination for low power nodes in heterogeneous networks. In: Proceedings of IEEE Vehicular Technology Conference (VTC Fall), pp: 1–5. [Google Scholar]
  10. Dhillon H S, Ganti R K. & Baccelli F, et al. 2012. Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J. Sel. Area Commun., 30: 550–560. [CrossRef] [Google Scholar]
  11. Amani M, Aijaz A. & Uddin N, et al. 2013. On mobile data offloading policies in heterogeneous wireless networks. In: Proceedings of IEEE Vehicular Technology Conference (VTC Spring), pp: 1–5. [Google Scholar]
  12. Aijaz A, Aghvami H. & Amani M. 2013. A survey on mobile data offloading: Technical and business perspectives. IEEE Wirel. Commun., 20: 104–112. [CrossRef] [Google Scholar]
  13. Tabrizi H, Farhadi G. & Cioffi J. 2011. A learning-based network selection method in heterogeneous wireless systems. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), pp: 1–5. [Google Scholar]
  14. Prasad A, Lunden P. & Tirkkonen O, et al. 2013. Mobility state based flexible inter-frequency small cell discovery for heterogeneous networks. In: Proceedings of IEEE the International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp: 2057–2061. [Google Scholar]
  15. Lopez-Perez D, Guvenc I. & Chu X L. 2012. Mobility enhancements for heterogeneous networks through interference coordination. In: Proceedings of IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp: 69–74. [Google Scholar]
  16. Tian Yafei, Lu Songtao. & Yang Chenyang.2013. Macro-Pico Amplitude-Space Sharing with Optimized Han-Kobayashi Codin. IEEE Transactions on Communications, 61(10): 4404–4415. [CrossRef] [Google Scholar]
  17. Gresset N, Halbauerh. & Koppenborg J, et al. 2012. Interference-Avoidance Techniques: Improving Ubiquitous User Experienc. IEEE Vehicular Technology Magazine,7(4): 37–45. [CrossRef] [Google Scholar]
  18. P. A. Morreale & J. M. Anderson. 2014. Software Defined Networking: Design and Deployment. Boca Raton, FL, USA: CRC Press. [Google Scholar]
  19. S. Sezer et al. 2013. Are we ready for SDN? Implementation challenges for software-defined networks, IEEE Commun. Mag., 51(7): 36–43. [CrossRef] [Google Scholar]
  20. Slavica Tomovic, Milica Pejanovic-Djurisic. & Igor Radusinovic. 2014. SDN Based Mobile Networks: Concepts and Benefits. Wireless Personal Communications, 78 (3): 1629–1644. [CrossRef] [Google Scholar]
  21. Gao X Q, You X H. & Jiang B, et al. 2004. MIMO-GMC wireless transmission technology for beyond 3G mobile communications. Acta Electron Sin, 12A: 105–108 [Google Scholar]
  22. B. Farhang-Boroujeny. 2011. OFDM Versus Filter Bank Multicarrier, IEEE Signal Processing Magazine, 28(3): 92–112. [CrossRef] [Google Scholar]
  23. Kishiyama Y. Future radio access for 5G. NTT DOCOMO, Inc [Google Scholar]
  24. Estella I, Pascual-Iserte A. & Payar M. 2010. OFDM and FBMC performance comparison for multistream MIMO systems. In: Proceedings of Future Network and Mobile Summit, pp: 1–8. [Google Scholar]
  25. Wunder G, Kasparick M. & ten Brink S. 2013. 5G NOW: Challenging the LTE design paradigms of orthogonality and synchronicity. In: Proceedings of IEEE Vehicular Technology Conference (VTC Spring), pp: 1–5. [Google Scholar]
  26. Pinchon D. & Siohan P. 2013. Derivation of analytical expressions for flexible PR low complexity FBMC Systems. In: Proceedings of European Signal Processing Conference, pp: 1–5. [Google Scholar]
  27. Sahin A, Guvenc I, Arslan H. A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects. http://arxiv.org/abs/1212.3374v2 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.