Open Access
Issue
MATEC Web of Conferences
Volume 18, 2014
101 EUROTHERM Seminar – Transport Phenomena in Multiphase Systems
Article Number 01012
Number of page(s) 9
Section Boiling, evaporation, condensation
DOI https://doi.org/10.1051/matecconf/20141801012
Published online 05 December 2014
  1. S. Lee, U.S. Choi, Li S., Eastman J.A., Measuring thermal conductivity of fluids containing oxidie nanoparticles, ASME Journal of Heat Transfer, vol. 121, pp. 280–289, 1999. [CrossRef] [Google Scholar]
  2. J.T. Cieslinski, T. Kaczmarczyk T., Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes. Nanoscale Research Lett., 2011, doi:10.1186/1556-276X-6-220 - ISSN 1556-276X. [Google Scholar]
  3. J.T. Cieslinski, T. Kaczmarczyk T., Pool boiling of water-Al2O3 and water-Cu nanofluids on porous coated tubes. Heat Transfer Engineering (available on-line in October 2014, hard copy – March 2015) [Google Scholar]
  4. S.M. You, J.H. Kim, K.H. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Applied Physics Letter, vol. 83, pp. 3374–3376, 2003. [CrossRef] [Google Scholar]
  5. P. Vassallo, R. Kumar, S. D’Amico, Pool boiling heat transfer experiments in silica-water nanofluids, International Journal of Heat and Mass Transfer, vol. 47, pp. 407–411, 2004. [CrossRef] [Google Scholar]
  6. N. Dinh, J. Tu, T. Theofanous, Hydrodynamic and physico-chemical nature of burnout in pool boiling, 5th International Conference on Multiphase Flow, Yokohama, paper No. 296 (CD-ROM), 2004. [Google Scholar]
  7. G. Moreno, S.J. Oldenburg, S.M. You, J.H. Kim, Pool boiling heat transfer of alumina-water, zinc oxide-water and alumina-water-ethylene glycol nanofluids, Paper no. HT2005-72 375 pp. 625–632, http://dx.doi.org/10.1115/HT2005-72375. [Google Scholar]
  8. I.C. Bang and S.H. Chang, Boiling heat transfer performance and phenomena of Al2O3–water nanofluids from a plain surface in a pool. International Journal of Heat and Mass Transfer, vol. 48, pp. 2407–2419, 2005. [CrossRef] [Google Scholar]
  9. D. Milanova, R. Kumar, Role of ions in pool boiling heat transfer of pure and silica nanofluids. Applied Physics Letters 2005, 87:233107. [CrossRef] [Google Scholar]
  10. J.E. Jackson, B.V. Borgmeyer, C.A. Wilson, P. Cheng, J.E. Bryan, Characteristics of Nucleate Boiling with Gold Nanoparticles in water. In IMECE2006; November 5-10, 2006; Chicago, Illinois, USA, 2006. [Google Scholar]
  11. H. Kim, J. Kim, M.H. Kim, Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids, International Journal of Heat and Mass Transfer, vol. 49, pp. 5070–5074, 2006. [CrossRef] [Google Scholar]
  12. H. Kim, J. Kim, M. Kim, CHF enhancement in pool boiling of water-TiO2 nanofluids: effect of nanoparticle-coating on heating surface, 13th Int. Heat Transfer Conference, Sydney, paper NAN-22 (CD-ROM), 2006. [Google Scholar]
  13. S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids, Applied Physics Letters, vol. 89, pp. 153107, 2006. [CrossRef] [Google Scholar]
  14. S. Kim, I. Bang, J. Buongiorno, L. Hu, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, International Journal of Heat and Mass Transfer, vol. 50, pp. 4105–4116, 2007. [CrossRef] [Google Scholar]
  15. M.R. Kashinath, Parameters affecting critical heat flux on nanofluids: heater size, pressure orientation and anti-freeze addition, MSc, University of Texas at Arlington, 2006. [Google Scholar]
  16. D. Milanova, R. Kumar, S. Kuchibhatla, S. Seal, Heat transfer behavior of oxide nanoparticles in pool boiling experiment, Int. Fourth International Conference on Nanochannels, Microchannels and Minichannels (ICNMM2006); June 19-21, 2006; Limerick, Ireland. 2006. [Google Scholar]
  17. H. Kim, J. Kim, M. Kim, Experimental study on CHF characteristics of water-TiO2 nano-fluids, Nuclear Engineering and Technology, vol. 38, pp. 61–68, 2006. [Google Scholar]
  18. H.D. Kim, M.H. Kim, Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids, Applied Physics Letters, vol. 91, pp. 014104, 2007. [CrossRef] [Google Scholar]
  19. H. Kim, J. Kim, M. Kim, Experimental studies on CHF characteristics of nano-fluids at pool boiling, International Journal of Multiphase Flow, vol. 33, pp. 691–706, 2007. [CrossRef] [Google Scholar]
  20. Z. Liu, J. Xiong, R. Bao, Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface, International Journal of Multiphase Flow, vol. 33, pp. 1284–1295, 2007. [CrossRef] [Google Scholar]
  21. J. Coursey and J. Kim, Nanofluid boiling: The effect of surface wettability, International Journal of Heat and Fluid Flow, vol. 29, pp. 1577–1585, 2008. [CrossRef] [Google Scholar]
  22. Z. Liu and L. Liao, Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling, International Journal of Heat and Mass Transfer, vol. 51, pp. 2593–2602, 2008. [CrossRef] [Google Scholar]
  23. D. Milanova and R. Kumar, Heat transfer behavior of silica nanoparticles in pool boiling experiment. ASME Journal of Heat Transfe, vol. 130, pp. 042401, 2008. [CrossRef] [Google Scholar]
  24. M.N. Golubovic, H.D. Madhawa Hettiarachchi, W.M. Worek, W.J. Minkowycz, Nanofluids and critical heat flux, experimental and analytical study, Applied Thermal Engineering, vol. 29, pp. 1281–1288, 2009. [CrossRef] [Google Scholar]
  25. B. Jo, P.S. Jeon, J. Yoo, H.J. Kim, Wide range parametric study for the pool boiling of nanofluids with a circular plate heater, Journal of Visualization, vol. 12, pp. 37–46, 2009. [CrossRef] [Google Scholar]
  26. R. Kumar and D. Milanova, Effect of surface tension on nanotube nanofluids, Appl. Physics Lett., vol. 94, 073107, 2009. [CrossRef] [Google Scholar]
  27. H. Kim, M. Kim, Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids, Int.J. Heat Mass Transfer, vol. 45, pp. 991–998, 2009. [CrossRef] [Google Scholar]
  28. K.J. Park, D. Jung, S.E. Shim, Nucleate boiling heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes, Int. J. Multiphase Flow, vol. 35, pp. 525–532, 2009. [CrossRef] [Google Scholar]
  29. H. Kim, G. DeWitt, T. McKrell, J. Buongiorno, L.W. Hu, On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles, Int. Journal of Multiphase Flow, vol. 35, pp. 27–438, 2009. [Google Scholar]
  30. R. Kathiravan, R. Kumar, A. Gupta, R. Chandra, Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater, International Journal of Heat and Mass Transfer, vol. 53, pp. 1673–1681, 2010. [CrossRef] [Google Scholar]
  31. S.M. Kwark, R. Kumar, G. Moreno, J. Yoo, S.M. You, Pool boiling characteristics of low concentration nanofluids, Int. Journal of Heat and Mass Transfer, vol. 53, pp. 972–981, 2010. [CrossRef] [Google Scholar]
  32. S.M. Kwark, G. Moreno, R. Kumar, H. Moon, S.M. You, Nanocoating characterization in pool boiling heat transfer of pure water, Int. J. Heat Mass Transfer, vol. 53, pp. 4579–4587, 2010. [CrossRef] [Google Scholar]
  33. S.M. Kwark, M. Amaya, R. Kumar, G. Moreno, S.M. You, Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters, International Journal of Heat and Mass Transfer, vol. 53, pp. 5199–5208, 2010. [CrossRef] [Google Scholar]
  34. Z.H. Liu, X.F. Yang, J.G. Xiong, Boiling characteristics of carbon nanotube suspensions under sub-atmospheric pressures, Int. J. Thermal Sciences, vol. 49, pp. 1156–1164, 2010. [CrossRef] [Google Scholar]
  35. H. Kim, H.S. Ahn, M.H. Kim, On the mechanism of pool boiling critical heat flux enhancement in nanofluids, ASME Journal of Heat Transfer, vol. 132, pp. 061501, 2010. [CrossRef] [Google Scholar]
  36. S.D. Park, S. Won Lee, S. Kang, I.C. Bang, J.H. Kim, H.S. Shin, D.W. Lee, D. Won Lee, Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux, Applied Physics Letters, vol. 97, pp. 023103, 2010. [CrossRef] [Google Scholar]
  37. B. Truong, L.W. Hu, J. Buongiorno, T. McKrell, Modification of sandblasted plate heaters using nanofluids to enhance pool boiling critical heat flux, International Journal of Heat and Mass Transfer, vol. 53, pp. 85–94, 2010. [CrossRef] [Google Scholar]
  38. R. Kathiravan, R. Kumar, A. Gupta, R. Chandra, Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater, Heat Transfer Engineering, vol. 33, pp. 69–78, 2012. [CrossRef] [Google Scholar]
  39. E.J. Park, S.D. Park, I.C. Bang, Y.B. Park, H.W. Park, Critical heat flux characteristics of nanofluids based on exfoliated graphite nanoplatelets (xGnPs), Materials Letters, vol. 81, pp. 193–197, 2012. [CrossRef] [Google Scholar]
  40. T. Lee, J.H. Lee, Y.H. Jeong, Flow Boiling CHF Characteristics of Magnetic Nanofluid under the Magnetic Field Condition, Proceedings of ICAPP, Paper No. KF129, 2013. [Google Scholar]
  41. J.H. Lee, T. Lee, Y.H. Jeong, Experimental investigation on the CHF enhancement of pool boiling using water-based nanofluid at higher pressure, Proc. of ICAPP, Paper No. 131, 2013. [Google Scholar]
  42. S.C. Hiswankar, J.M. Kshirsagar, Determination Of Critical Heat Flux In Pool Boiling Using ZnO Nanofluids, Int. Journal of Engineering Research & Technology, vol. 2 Issue 7, 2013. [Google Scholar]
  43. E. Park, I. Bang, H. Park, Critical heat flux (CHF) enhancement of the nanofluids by the electrical explosion of a wire in liquids, Nanotech, vol. 2, pp. 353 – 356, 2012. [Google Scholar]
  44. Kole, Madhusree, T.K. Dey, Pool Boiling Heat Transfer and Critical Heat Flux Enhancement of Copper Nanoparticles Dispersed in Distilled Water, Journal of Nanofluids, vol. 3, Number 2, pp. 85–96(12), 2014. [CrossRef] [Google Scholar]
  45. Lienhard J. H., Dhir V. K.: Hydrodynamic prediction of peak pool-boiling heat fluxes from finite bodies. Transactions ASME. J. of Heat Transfer, vol. 95, 152–158, 1973. [CrossRef] [Google Scholar]
  46. M.G. Cooper, Heat Flow in Saturated Nucleate Pool Boiling– A Wide-Ranging Examination Using Reduced Properties, Advances in Heat Transfer, vol. 16, pp. 157–239, 1984. [CrossRef] [Google Scholar]
  47. J.T. Cieśliński, Modelling of nucleate pool boiling. Gdansk, Wyd. P. Gdan, 2005 (in Polish). [Google Scholar]
  48. K. Sefiane, J. Skilling, J. MacGillivray, Contact line motion and dynamic wetting of nanofluid solutions. Advances in Colloid and Interface Science, Vol. 138, pp. 101–120, 2008. [CrossRef] [Google Scholar]
  49. D. Wen, Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF), International Journal of Heat and Mass Transfer, vol. 51, pp. 4958–4965, 2008. [CrossRef] [Google Scholar]
  50. S.D. Park, I.Ch. Bang, Investigation of mechanism on critical heat flux for nanofluid during pool boiling based on Taylor instability, 8th Int. Conf. on Multiphase Flow, ICMF, 2013, Jeju, Korea, 2013. [Google Scholar]
  51. W.R. Lee, W.S. Han, J.Y. Lee, Effect of flow instability on pool boiling and CHF of thin flat plate heater PCB, 8th Int. Conf. on Multiphase Flow, ICMF, 2013, Jeju, Korea, 2013. [Google Scholar]
  52. R. Chen et al., Nanowires for Enhanced Boiling Heat Transfer, Nano Lett., Vol. 9, No. 2, pp. 548–553, 2009. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.