Open Access
MATEC Web of Conferences
Volume 17, 2014
Advanced Green Material and Technology Symposium (AGMTS 2014)
Article Number 01020
Number of page(s) 7
Published online 02 September 2014
  1. Othuman Mydin, M.A., Y.C. Wang, 2012. Mechanical properties of foamed concrete exposed to high temperatures. Journal of Construction and Building Materials, 26(1): 638–654 [CrossRef] [Google Scholar]
  2. Rao, K. M. M., and Rao, K. M. 2007. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Composite Structures, 77(3): 288–295 [Google Scholar]
  3. Kessler, H. G. 1998. Cellular lightweight concrete, Concrete Engineering International, p 56–60. [Google Scholar]
  4. Othuman Mydin, M.A., Y.C. Wang, 2011. Elevated-Temperature Thermal Properties of Lightweight Foamed Concrete. Journal of Construction & Building Materials, 25(2): 705–716 [CrossRef] [Google Scholar]
  5. Soleimanzadeh, S., M.A. Othuman Mydin, 2013. Influence of High Temperatures on Flexural Strength of Foamed Concrete Containing Fly Ash and Polypropylene Fiber, International Journal of Engineering, 26(1): 365–374. [CrossRef] [Google Scholar]
  6. Othuman Mydin, M.A., 2011. Thin-walled steel enclosed lightweight foamcrete: A novel approach to fabricate sandwich composite. Australian Journal of Basic and Applied Sciences, 5(12): 1727–1733 [Google Scholar]
  7. Othuman Mydin, M.A., Y.C. Wang, 2011. Structural Performance of Lightweight Steel-Foamed Concrete-Steel Composite Walling System under Compression. Journal of Thin-walled Structures, 49(1): 66–76 [CrossRef] [Google Scholar]
  8. BCA, 1994. Foamed concrete: Composition and properties. Report Ref. 46.042, Slough: BCA [Google Scholar]
  9. Othuman Mydin, M.A., 2013. Modeling of Transient Heat Transfer in Foamed Concrete Slab. Journal of Engineering Science and Technology, 8(3): 331–349 [Google Scholar]
  10. Aldridge, D., Ansell, T. 2001. Foamed concrete: production and equipment design, properties, applications and potential. In: Proceedings of one day seminar on foamed concrete: Properties, applications and latest technological developments, Loughborough University, p 1–7 [Google Scholar]
  11. Othuman Mydin, M.A., 2013. An Experimental Investigation on Thermal Conductivity of Lightweight Foamcrete for Thermal Insulation. Jurnal Teknologi, 63(1): 43–49. [CrossRef] [Google Scholar]
  12. Othuman Mydin, M.A., 2013. Modeling of Transient Heat Transfer in Foamed Concrete Slab. Journal of Engineering Science and Technology, 8(3): 331–349. [Google Scholar]
  13. John, V. M., Cincotto, M. A., Sjostrom, C., Agopyan, V., and Oliveira, C. T. A., 2005. Durability of slag mortar reinforced with coconut fibre. Cement and Concrete Composites, 27(5): 565–574 [CrossRef] [Google Scholar]
  14. Das Gupta, N. C., Paramsivam, P,. and Lee, S. L., 1978. Mechanical properties of coir reinforced cement pastes composites. Housing Science, Pergamon Press Inc. London. 2(5): 391–406 [Google Scholar]
  15. Slate, F. O., 1976. Coconut Fibers In Concrete. Eng J Singapore, 3 (1): 51–54. [Google Scholar]
  16. Li, Z., Wang, L., and Wang, X., 2006. Flexural characteristics of coir fiber reinforced cementitious composites. Fibers and Polymers. 7(3): 286–294. [CrossRef] [Google Scholar]
  17. Mydin, M.A., Y.C. Wang, 2012. Thermal and mechanical properties of Lightweight Foamed Concrete (LFC) at elevated temperatures. Magazine of Concrete Research, 64(3): 213–224 [CrossRef] [Google Scholar]
  18. Jones, M. R. & McCarthy, 2006. A. Heat of hydration in foamed concrete: Effect of mix constituents and plastic density. Cement and Concrete Research, 36 (6): p 1032–1041. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.