Open Access
This article is a note for:
[https://doi.org/10.1051/matecconf/20141101015]


Issue
MATEC Web of Conferences
Volume 11, 2014
International Congress on Materials & Structural Stability
Article Number 01048
Number of page(s) 5
Section Materials & Pathologies
DOI https://doi.org/10.1051/matecconf/20141101048
Published online 20 May 2014
  1. Guangping L., Nan L., Wen Y., Changhe G., Wei Zhou, Yuanyuan L., Composition and microstructure of a periclase–composite spinel brick used in the burning zone of a cement rotary kiln, Ceramics International, 2013 [Google Scholar]
  2. Lee W.E., Zhang S., Melt corrosion of oxide and oxide–carbon refractories, IntMater Rev 1999, 44, 77–104. [Google Scholar]
  3. Petkov V., Jones P.T., Boydens E., Blanpain B., Wollants P., Chemical corrosion mechanisms of magnesia–chromite and chrome-free refractory bricks by copper metal and anode slag, J Eur Ceram Soc 2007, 27. [Google Scholar]
  4. Kaur R.R., Swinbourne D.R., Wadsley M.W., Nexhip C., Comparison of ferrous calcium silicate slag and calcium ferrite slag interactions with magnesia–chromeRefractories, Metall Mater Trans B: Proc Metall MaterProc Sci , 2011, 42, 451 – 9. [CrossRef] [Google Scholar]
  5. Zhang S., Sarpoolaky H., Marriott N.J., Lee W.E. Penetration and corrosion of magnesia grain by silicate slags, Br Ceram Trans, 2000, 99 , 248 –55. [CrossRef] [Google Scholar]
  6. Poirier J., Qafssaoui F., Ildefonse J.P., Bouchetou M.L., Analysis and interpretation of refractory microstructures in studies of corrosion mechanisms by liquid oxides, JeurCeramSoc, 2008, 28. [Google Scholar]
  7. Diouri A., Ouichou L., Boukharl A., Interaction charge-brique rcfractaire en magnesia spinelle dans un four industriel marocain, J. Chim. phys, 1991, 88, 2341. [Google Scholar]
  8. Qotaibi Z., Diouri A., Boumari A., Taibi M., Aride J., Analysis of magnesia chrome rjwractories weared In a rotary cement kiln nn. Chim. Sci. Mat, 1998, 23, pp. 169–172. [CrossRef] [Google Scholar]
  9. Recio Dominguez I., Gomez-Millan J., Alvarez M., Deaza S., Contreras L., De Aza A.H., Build-up formation and corrosion of monolithic refractoriesin cement kiln preheaters, Journal of the European Ceramic Society, 2010, 30. [Google Scholar]
  10. Poirier J., Qafssaoui F., Ilde Fonse J.P., Bouchetou M.L., Analusis and interpretation of refractory microstructures in studies of corrosion mechanisms by liquid oxides, Journal of the European Ceramic Society, 2008. [Google Scholar]
  11. Stjernberg J., Olivas-Ogaz M.A., Antti M.L., Ion J.C., Lindblom B., Laboratory scale study of the degradation of mullite refractories by reaction with alkali-doped deposit materials Ceramics International, 2013, 93, 791–800. [Google Scholar]
  12. Scheunis L., Fallah Mehrjardi A., Campforts M., Jones P.T., Blanpain B., Jak E., The effect of phase formation during use on the chemical corrosion of magnesia–chromite refractories in contact with a non-ferrous PbO–SiO2based slag, Journal of the European Ceramic Society, 2014. [Google Scholar]
  13. Serena S., Sainz M.A., Caballero A., Corrosion behaviour of MgO/ CaZrO refractory matrix by clinker, J. Eur. Ceram. Soc. 2004, 24, 2399–2406. [CrossRef] [Google Scholar]
  14. Galicia J.L.R., Aza A.H.D., Angeles J.C.R., P. Pena, The mechanism of corrosion of MgO–CaZrO–calcium silicate materials by cement clinker, J. Eur. Ceram. Soc, 2007, 27, 79–89. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.