Issue |
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
|
|
---|---|---|
Article Number | 01122 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/matecconf/202439201122 | |
Published online | 18 March 2024 |
Heart disease prediction using machine learning algorithms
1 Department of CSE – Data Science, K G Reddy College of Engineering and Technology, Hyderabadi, Telengana, India.
2 Department of CSE,Mohan Babu University (Erstwhile Sree Vidyanikethan Engineering College(Autonomous), Tirupati, Andhra Pradesh , India.
3 Department of IT, GRIET, Hyderabad, Telangana, India.
4 Lovely Professional University, Phagwara, Punjab, India.
* Corresponding author: higovardhan84@gmail.com
Heart disease is among the conditions that people suffer from most frequently. Millions of people worldwide pass away each year as a result of it, making it one of the main causes of mortality. Heart disease can be characterised by issues with the heart valves, heart failure, arrhythmias, and coronary artery disease. Heart disease comes in more than 30 distinct forms. By allowing for prompt intervention and the right kind of care, early and precise cardiac disease prediction can greatly improve patient outcomes. In this model, we investigate the application of machine learning techniques for anticipating cardiac disease. We investigate a large dataset made up of patient details, such as demographics, medical histories, and clinical measures. It is absolutely mind-blowing to think that machine learning algorithms could one day properly forecast when cardiac disease will start and how to diagnose it. Machine learning techniques including logistic regression, decision trees, XGBoost, gradient boosting, random forests, support vector machines (SVMs), and artificial neural networks (ANNs) are utilised to construct predictive models. A hybrid model including ANN, gradient boost, Decision Tree, SVM, random forests, & Logistic Regression makes up the forecasting model. To increase the model's accuracy. To manage missing values, normalise features and solve class imbalance. The dataset has been pre-processed. The best accurate heart disease predictions are found using feature selection approaches. Area under the receiver's operating characteristic curve, recall, accuracy, and precision are some of the performance measures used for training and evaluating the models. The major goal of this model is to put out a novel strategy for creating a model that successfully solves practical issues
Key words: Performance analysis / gradient boosting / SVM / XGBoost / random forests / ANN / decision trees
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.