Issue |
MATEC Web Conf.
Volume 389, 2024
11th International Symposium on Occupational Health and Safety (SESAM 2023)
|
|
---|---|---|
Article Number | 00079 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/202438900079 | |
Published online | 10 January 2024 |
Integrated CAD/CAM Approach for Experimental Stands in Hydrogen Explosion Analysis
1 National Institute for Research and Development in Mine Safety and Protection to Explosion INSEMEX Petrosani, 32-34 G-ral Vasile Milea Street, Petrosani, Romania
2 University of Petrosani, 20 Universitatii street, Petrosani, Romania
* Corresponding author: munteanu.laurentiu@insemex.ro
Hydrogen is considered a promising clean energy carrier gas for the future and is used in fuel cell systems to generate electricity without producing greenhouse gas emissions. However, the safe storage and handling of hydrogen are essential for the widespread adoption of hydrogen as an alternative energy source. Research into hydrogen explosions is aimed at developing safe storage methods, safety guidelines, and accident prevention measures - crucial objectives for the sustainable growth of the hydrogen economy. Fundamental research into fast hydrogen combustion requires specially designed and built experimental stands to ensure both safe operation and recording of explosion parameters. More than a simple combustion chamber, often the geometry of the stands must contain elements to increase the complexity of the explosion process. In this respect, this paper deals with the possibilities of designing and 3D printing obstacles that can be placed in the path of hydrogen explosions on research stands to modify the cross-section, direct the pressure waves, turbulence the fluid movements, or even suppress the flame front. By combining the computer-aided modeling and design facilities offered by the Autodesk Fusion 360 software, digitized models are converted into 3D objects by the process of dividing them into thin horizontal layers (slices) and transmitting the information thus generated to the 3D printer, using Ultimaker Cura. Here, through the process of material deposition and fusion (FDM), the thermoplastic material is extruded, deposited layer by layer, rapidly cooling, and solidifying to form the final object.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.