Issue |
MATEC Web Conf.
Volume 388, 2023
2023 RAPDASA-RobMech-PRASA-AMI Conference Advanced Manufacturing Beyond Borders - The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI, hosted by CSIR and CUT
|
|
---|---|---|
Article Number | 07019 | |
Number of page(s) | 8 | |
Section | Computational & Data-driven Modelling | |
DOI | https://doi.org/10.1051/matecconf/202338807019 | |
Published online | 15 December 2023 |
Stability of NaO2 and LiO2 discharge products in metal-air batteries: density functional theory study
Materials Modelling Centre, School of Physical and Mineral Sciences, University of Limpopo, Private Bag x1106, Sovenga 0727, South Africa
* Corresponding author: brianramogayana@gmail.com
Rechargeable metal-air batteries are considered the next generation energy storage devices with the highest energy density of ~200 Wh/kg (which is much higher than the Li-ion batteries with ~150 Wh/kg). However, their practical applications are widely affected by the formation of unstable discharge products (like Na/LiO2, Na/Li2O, and Na/LiO) which react with electrolyte or the porous electrode material leading to either fire or explosion. Here, we explore the stability of the bulk pyrite and marcasite lithium/sodium superoxide (Li/NaO2) discharge products produced in Li and Na-air batteries using density functional theory calculations. The calculated lattice and heats of formations are consistent with available reported data. The electronic properties of show the Pnmm LiO2 as the most stable structure with the least density of states at the Fermi. The vibrational properties also show no imaginary vibrations in all directions for Pnmm LiO2. This finding can help direct and give an insight into the stability of major discharge products and give research direction towards controlling the formation of desired M-O discharge products in the batteries.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.