Issue |
MATEC Web Conf.
Volume 379, 2023
18e Congrès de la Société Française de Génie des Procédés (SFGP2022)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 9 | |
Section | Développements méthodologiques pour le Génie des Procédés / Methodologies for Chemical Engineering | |
DOI | https://doi.org/10.1051/matecconf/202337901005 | |
Published online | 12 May 2023 |
Energy and exergy analysis of a pilot plant for the co-production of cold and electricity
Analyse énergétique et exergétique d’une installation pilote de coproduction de froid et électricité
1 Univ. Grenoble Alpes, CEA, LITEN, DTCH. F-38000 Grenoble, France
2 Laboratoire LOCIE, Université Savoie Mont Blanc, CNRS UMR 5271, 73376 Le Bourget du Lac, France
Given the ever-increasing global demand for energy and the attention to be paid to environmental issues and climate change, research is developing more and more about new cold production technologies using renewable sources or recovery. This cooling demand is mainly covered by technologies conventional machines, in particular vapor compression machines, which leads to a high increased demand for electricity. In this context, absorption systems (Herold et al. 2016), lend themselves well to the recovery of heat at low temperature for the production of cold. The advantage of these machines is that the mechanical compression is replaced by a compression thermochemical that uses heat. Although characterized by a low level of maturity technology (TRL 3-4), an even more ambitious study concerns combined systems based on exploitation of thermal energy at low temperatures, in which electrical power and cooling are produced in the same cycle. The present work focuses on the analysis of a pilot installation (Figure 1) of combined production cooling and electricity (CFE) in parallel, from a low temperature source [80 -150°C] and from maximum thermal power of the generator 15 kW.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.