Issue |
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
|
|
---|---|---|
Article Number | 09005 | |
Number of page(s) | 6 | |
Section | Computational Modelling Related to Self-Healing and Repair of Cementitious Materials | |
DOI | https://doi.org/10.1051/matecconf/202337809005 | |
Published online | 28 April 2023 |
Tensile behavior of strain-hardening cementitious composites after self-healing based on a novel fiber-bridging model considering preloading and reloading
1
Shanghai University, 99 Shangda Road, Shanghai, China
2
Hong Kong University of Science and Technology, 1 University Road, Hong Kong, China
* Corresponding author: yangqingliu@shu.edu.cn
The self-healing of strain-hardening cementitious composites (SHCCs) causes the recovery of the debonded fiber-to-matrix interface by the products of autogenous healing (mainly calcium carbonates). The recovery of chemical bond Gd has been detected in the reactive magnesia cement (RMC)-based SHCC (SHMC), and the recovery of frictional bond τ0 has been detected in both SHMCs and normal SHCCs. While these phenomena can significantly alter the fiber-bridging σ-w relationship in SHCCs, they have not been quantified in any existing analytical models. In this work, we present a new fiber-bridging model that captures the effect of self-healing of RMC-based SHCC. On the single-fiber level, the debonding and slip-hardening of the fiber-to-matrix interface induced by a tensile preloading as well as the recovery of the interface properties by self-healing are coherently quantified in a clear kinetic process. On the fiber-bridging level, the tensile stress vs. crack width curve is formed by summing individual fibers’ tensile load vs. displacement relationship. The modeling results can well capture the fiber-bridging behavior of the self-healed SHCC specimens. Further, a parametric study is conducted to investigate the tensile behavior of SHCC after self-healing. The effects of preloading levels, recovered τ0, and fiber strength are discussed.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.