Issue |
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 10 | |
Section | Engineering and Technologies for Sustainable Development | |
DOI | https://doi.org/10.1051/matecconf/202337701013 | |
Published online | 17 April 2023 |
Modelling of Hydraulic Dynamics in Sludge Treatment Reed Beds with Moving Boundary Condition
Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Sarawak, Malaysia
yuzhe@postgrad.curtin.edu.my; tan.yee.yong@curtin.edu.my; tang.fu.ee@curtin.edu.my; agus.saptoro@curtin.edu.my
The conventional method of simulation using fixed mesh method (FMM) of discretization is a well-known and trusted procedure in modelling hydraulic dynamics. However, new ideas of innovation in modelling should be advanced. The moving mesh method (MMM) has been considered as a novel approach in modelling hydraulic dynamics after depending on the existing simulation model for decades. The MMM is capable of describing the moving boundary condition of an actual wetland system due to water ponding. An idealized model should be able to simulate the actual hydraulic flows through the system with the corresponding porosity. Hence, a combination of MMM and FMM (MM-FMM) of discretization for hydraulic dynamics is studied in this project to model the flux with respect to water ponding scenario in a sludge treatment reed bed and unsaturated transient flow within the bed. Such method has evidently proved to simulate the actual hydraulic flows in contrast to conventional method. The application of MMM limits the maximum flux to keep within its saturated conductivity, thus reduces the effect of flow overprediction. Subsequently, the simulated results for hydraulic head and moisture content can be predicted for actual condition of different cases according to their respective fluxes.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.