Issue |
MATEC Web Conf.
Volume 369, 2022
40th Annual Conference - Meeting of the Departments of Fluid Mechanics and Thermomechanics in the connection with XXIII. International Scientific Conference - The Application of Experimental and Numerical Methods in Fluid Mechanics and Energy (40th. MDFMT & XXIII. AEaNMiFMaE-2022)
|
|
---|---|---|
Article Number | 05005 | |
Number of page(s) | 7 | |
Section | Visualization of Flow | |
DOI | https://doi.org/10.1051/matecconf/202236905005 | |
Published online | 04 November 2022 |
Optimization of Air Flow in the Gasification Chamber of the Gasification Boiler Using the PIV Method
University of Žilina, Faculty of mechanical engineering, Department of power engineering, Univerzitná 8215/1, Žilina, SK
* Corresponding author: marek.patsch@fstroj.uniza.sk
The article deals with the optimization of biomass combustion in a small heat source using the optimal distribution of combustion air. Uneven distribution of combustion air was observed during certification tests and in real operation of the used heat source and has an impact on uneven combustion of biomass in the gasification chamber, on increasing emissions and combustion losses. In the first phase of the research, optimization was carried out using CFD simulations, then a transparent model of a real heat source was created, on which the real distribution of combustion air in the gasification chamber was observed using the Particle Image Velocimetry (PIV) method. The results of CFD simulations and the PIV method led to the optimization of the cross-sectional profiles of the four supply channels for gasification air supply. CFD simulations and subsequent PIV measurements on the experimental device were carried out without real combustion, only the air flow in the empty gasification chamber was investigated. This approach was chosen in order to simplify calculations and experiments and on the assumption that with optimal distribution of combustion air in the empty chamber, there will be an optimal even during real combustion. The flow of primary air in the gasification chamber in real operation is influenced by the size and shape of the inserted biomass and its location in the chamber, and this influence is random and difficult to verify. After optimization, the distribution of the primary combustion air in the gasification chamber is uniform and the same amount of air flows into the chamber through the four combustion air inlets.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.