Issue |
MATEC Web Conf.
Volume 361, 2022
Concrete Solutions 2022 – 8th International Conference on Concrete Repair, Durability & Technology
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 5 | |
Section | Theme 1 - Case Studies: Part 2 - Durability Performance | |
DOI | https://doi.org/10.1051/matecconf/202236101003 | |
Published online | 30 June 2022 |
The carbonation and chloride penetration along highway concrete structures in a South alpine space
University of Applied Sciences of Southern Switzerland, DACD, V. Flora Ruchat 15, 6850 Mendrisio, Switzerland
* Christian Paglia: christian.paglia@supsi.ch
Reinforced concrete structures are subjected to atmospheric agents during time. The cyclic exposure to natural parameters such as temperature, wind, rain and snowfall may emphasize the detrimental effect on structures. The different types of infrastructure may also be exposed to artificial phenomena such as, salt spreading, splashing of salt containing water or leaching effects. These phenomena contribute to the degradation of cementitious material, and the main induced mechanisms are carbonation and chloride ingress into the structures. Many types of structure such as tunnels, underpasses, walls, bridges and manholes have been investigated along a 11 km long highway close to the Alps in their South part. The aim of the study was to clarify the extent of carbonation and chloride ingress, as well as their relationship over a 40 year period. The mean climatic parameters were also registered over the years. Generally, the structures exhibited a different behaviour. The carbonation was maximal in tunnels and underpasses. A generalyl high chloride content was found for all artefacts, well beyond the 0.025 % referred to the concrete mass up to 0.400 %. The tunnels exhibited both high mean carbonation and chloride content, while all other structures indicated a slight correlation between high chloride content and low carbonation. These latter parameters were also influenced by processes such as leaching, splashing and indirect exposure to the degrading agents
Key words: highway / concrete structures / carbonation / chloride
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.