Issue |
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
|
|
---|---|---|
Article Number | 03047 | |
Number of page(s) | 9 | |
Section | Computing Methods and Computer Application | |
DOI | https://doi.org/10.1051/matecconf/202235503047 | |
Published online | 12 January 2022 |
InP and InGaAs grown on InP substrate by molecular beam epitaxy
Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016, China
* Corresponding author: hailongyu@163.com
InP and InGaAs epitaxial layers on InP substrates using molecular beam epitaxy (MBE) have been studied. Carrier concentration and mobility of InP and InGaAs are found that are strongly correlated with the growth temperature and V/III ratio. The InGaAs layers using As2 were compared with the layers grown using As4 from a Riber standard cracker cell. When As4 is used, the highest electron mobility of InGaAs is 3960 cm2/(V·s) with the V/III ratio of 65. When converted to As2, the V/III ratio with the highest electron mobility decreased to 20. With the arsenic cracker temperature decreased from 950 ℃ to 830 ℃, the electron mobility increased from 4090 cm2/(V • s) to 5060 cm2/(V • s).
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.