Issue |
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
|
|
---|---|---|
Article Number | 03022 | |
Number of page(s) | 9 | |
Section | Computing Methods and Computer Application | |
DOI | https://doi.org/10.1051/matecconf/202235503022 | |
Published online | 12 January 2022 |
Automatic body region localization in 3D-CT images based on the improved YOLO model
1 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
2 Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
* Corresponding author: bprbjd@163.com
Automatic body region localization in medical three-dimensional (3D)-CT images is a critical step of computerized body-wide Automatic Anatomy Recognition (AAR) system, which can be applied for radiotherapy planning and interest slices retrieving. Currently, the complex internal structure of human body and time consuming computation are the main challenges for the localization. Therefore, this paper introduces and improves the YOLO-v3 model into the body region localization for these problems. First, seven categories of body regions in a CT volume image I are defined based on the modification version of our previous work. Second, an improved YOLO-v3 model is trained to classify each axial slice into one of the seven categories. Then, the effectiveness of the proposed method is evaluated on 3D-CT images that collected from 220 subjects. The experimental results demonstrate that the slice localizing error is less than 3 NoS (Number of slices), which is competitive to the state-of-the-art methods. Beyond this, our method is simple and computationally efficient owing to its less training time, and the average computational time for localizing a volume CT images is about 3 second, which shows potential for a further application.
Key words: Body Region Localization / 3D-CT Images / YOLO-v3 Model / Darknet-53
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.