Issue |
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
|
|
---|---|---|
Article Number | 03013 | |
Number of page(s) | 8 | |
Section | Computing Methods and Computer Application | |
DOI | https://doi.org/10.1051/matecconf/202235503013 | |
Published online | 12 January 2022 |
Sharpness evaluation of microscopic detection image for micro parts
Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
* Corresponding author: yuhuadong@cust.edu.cn
According to the characteristics of micro parts microscopic detection image, including the image texture is similar, the edge information is too little and the gray distribution Range is limited, based on the basic principles of algorithm, analyzes the traditional sharpness evaluation function. Aiming at the defect that the traditional sharpness evaluation function cannot have both high sensitivity and noise immunity, an algorithm based on local variance information entropy is proposed. The method uses the local variance to weight the self-information of each gray level, on the one hand, it makes up for the lack of spatial information of information entropy and avoids misjudgement of sharpness; on the other hand, it can increase the weights of clear region pixels when they participate in the calculation of information, while reducing the weights of background and noise region pixels, thereby improve the function sensitivity. The experimental results show that compared with the traditional sharpness evaluation function, the local variance information entropy function not only has high sensitivity, but also has better noise immunity and is suitable for actual auto-focusing systems.
Key words: Auto-focusing / Sharpness evaluation / Local variance information entropy / Micro parts / Microscopic image
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.