Issue |
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
|
|
---|---|---|
Article Number | 02064 | |
Number of page(s) | 6 | |
Section | Mathematical Science and Application | |
DOI | https://doi.org/10.1051/matecconf/202235502064 | |
Published online | 12 January 2022 |
Typical engineering design of potato micro-sprinkler irrigation in Northern Shanxi
1 College of Resources, Environment and Tourism, Capital Normal University, Beijing 100101, China
2 Beijing Laboratory of Water Resources Security, Beijing 100101, China
3 College of Forestry, Northwest Agriculture and Forestry University, Shaanxi 712100, China
* Corresponding author: changkkll@tom.com
The Loess Plateau in the northern part of Shanxi Province has uneven rainfall and large evaporation, so droughts often occur. The drought has restricted the development of the local planting industry and the economy. Micro sprinkler irrigation has the advantages of strong adaptability, saving water, saving labor and land, increasing production, and preventing salinization, which is very suitable for this area.
This micro-sprinkler irrigation design is carried out in typical plots, based on potato plant characteristics, rainfall data over the years, combined with corresponding specifications and actual conditions. This article uses a refraction micro-sprinkler with a spray diameter of 2.4 m. In the water transmission and distribution network, underground pipelines share 1,860 m of main pipes and sub-main pipes; surface pipelines share 1,200 m of branch pipes and 90,000 m of capillary pipes. The design meets the verification indicators of all irrigation groups, conforms to local actual conditions.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.