Issue |
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
|
|
---|---|---|
Article Number | 02024 | |
Number of page(s) | 9 | |
Section | Mathematical Science and Application | |
DOI | https://doi.org/10.1051/matecconf/202235502024 | |
Published online | 12 January 2022 |
Resident user load classification method based on improved Gaussian mixture model clustering
1 State Grid Shanghai Municlpal Electric Power Company, 200093 Shanghai, China
2 Shanghai University of Electric Power, 200090 Shanghai, China
* Corresponding author: spiderla97@163.com
In view of the limitation of “hard assignment” of clusters in traditional clustering methods and the difficulty of meeting the requirements of clustering efficiency and clustering accuracy simultaneously in regard to massive data sets, a load classification method based on a Gaussian mixture model combining clustering and principal component analysis is proposed. The load data are fed into a Gaussian mixture model clustering algorithm after principal component analysis and dimensionality reduction to achieve classification of large-scale load datasets. The method in this paper is used to classify loads in the Canadian AMPds2 public dataset and is compared with K-Means, Gaussian mixed model clustering and other methods. The results show that the proposed method can not only achieve load classification more effectively and finely, but also save computational cost and improve computational efficiency.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.