Issue |
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 8 | |
Section | Investigation in Physics and Materials | |
DOI | https://doi.org/10.1051/matecconf/202235501020 | |
Published online | 12 January 2022 |
Crystal structure and Hirshfeld surfaces analysis of Heterocyclic-and circulenes
1 Department of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University, 18031 Cherkasy, Ukraine
2 Linköping University, Department of Science and Technology, Laboratory of Organic Electronics, Norrköping, SE-60174 Sweden
* Corresponding author: karaush22@ukr.net
The crystal structure of the new diazatrioxa[9]circulene and tetrahydro-diazatetraoxa[10]circulene which represent the first synthesized representatives of “higher” hetero[n]circulenes with n>8, was analyzed in details. Hirshfeld surface analyses, the dnorm surfaces and two-dimensional fingerprint plots were used to verify the contributions of the different intermolecular interactions within the crystal structure of diazatrioxa[9]circulene and tetrahydro-diazatetraoxa[10]circulene. The Hirshfeld surface analysis of the crystal structure clarifies that the most important contribution for crystal packing is from H∙∙∙H and C∙∙∙H intermolecular interactions for both circulenes. The shape-index surface shows that in the case of diazatrioxa[9]circulene two sides of the molecules are involved with the same contacts in neighbouring molecules and curvedness plots show flat surface patches that are characteristic of planar stacking. Such face-to-face structural organization provides the main charge transfer pathway in [9]circulene. In the case of [10]circulene, the area involved in the same contacts is much less, however, two types of intermolecular packing modes can form such flat surface patches at curvedness plots which is useful for more efficient charge transfer.
Key words: heterocirculenes / Hirshfeld surfaces analysis / Crystal structure
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.