Issue |
MATEC Web Conf.
Volume 348, 2021
The 2nd International Network of Biomaterials and Engineering Science (INBES’2021)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/202134801015 | |
Published online | 17 November 2021 |
Synthesis of brightly luminescent colloidal formamidinium lead bromide perovskite FAPbBr3 nanoplatelets with tunable emission
1 University Hassan II of Casablanca, Faculty of sciences Ben M’sik, Department of Chemistry, Laboratory of Physical Chemistry of Materials, Casablanca, Morocco
2 University of Pisa, Department of Chemistry and Industrial Chemistry, Pisa, Italy
3 Italian National Council for Research - Institute for the Chemistry of OrganoMetallic Compounds, Florence, Italy
4 University of Florence, Department of Chemistry“U. Schiff”, Florence, Italy
* Corresponding author: nabilajarmouni@gmail.com
Hybrid halide perovskites are semicondoctor materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology. They have size-tunable emissions due to quantum size effects. In this work, the Formamidinium Lead Bromide perovskite CH(NH2)2PbBr3 nanoplatelets (NPLs) were successfully synthesized by ligand-assisted reprecipitation method under room condition, in which the emission color-tunability was realized via quantum size effect without anion–halide mixing, by varying the oleylamine to oleic acid volume ratio as surfactants, while the total amount of oleic acid remained unchanged. We are able to adjust the optical proprieties of FAPbBr3 NPLs and, consequently, their structural properties. The obtained colloidal solutions of FAPbBr3 nanoplatelets with uniform size exhibited different photoluminescence wavelengths covering the spectral region from 440 to 525 nm. The maximum absolute PL quantum yield (PLQY) of the green emission was measured to be as high as 80% at room temperature. The size of FAPbBr3 NPLs could be effectively tuned from 15.5 to 38.1 nm with an increase in the oleylamine and oleic acid ligands ratio.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.