Issue |
MATEC Web Conf.
Volume 347, 2021
12th South African Conference on Computational and Applied Mechanics (SACAM2020)
|
|
---|---|---|
Article Number | 00033 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/matecconf/202134700033 | |
Published online | 23 November 2021 |
A Quadratic Elasticity Formulation for Dynamic Interacting Structures in Flow
1
CSIR Next Generation Enterprises and Institutions, Meiring Naude Road, Pretoria, 0002, South Africa
2
ENGYS, Studio 20, Royal Victoria Patriotic Building, John Archer Way, London, SW18 3SX, United Kingdom
* Corresponding author: RSuliman@csir.co.za
The deformation of slender elastic structures due to the motion of surrounding fluid is a common multiphysics problem encountered in many applications. In this work we detail the development of a numerical model capable of solving such strongly-coupled fluid-structure interaction problems, and analyse the dynamic behaviour of multiple interacting bodies under fluid loading. In most fluid-structure interaction problems the deformation of slender elastic bodies is significant and cannot be described by a purely linear analysis. We present a new formulation to model these larger displacements. By extending the standard modal analysis technique for linear structural analysis, the governing equations and boundary conditions are updated to account for non-linear terms and a new modal formulation with quadratic modes is derived. The quadratic modal approach is tested on standard benchmark problems of increasing complexity and compared with analytical and full non-linear numerical solutions. An analysis of the dynamic interactions between multiple finite plates in various configurations under fluid loading, as well as the effects of the spacing between the structures, is also conducted. Numerical results are compared with theoretical and experimental approaches. The inverted hydrodynamic drafting effect of elastic bodies in an in-line configuration can be confirmed from our numerical simulations.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.