Issue |
MATEC Web Conf.
Volume 347, 2021
12th South African Conference on Computational and Applied Mechanics (SACAM2020)
|
|
---|---|---|
Article Number | 00013 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/matecconf/202134700013 | |
Published online | 23 November 2021 |
A Ffowcs Williams-Hawkings numerical aeroacoustic study of varied and fixed-pitch blades of an H-Rotor vertical axis wind turbine
University of Johannesburg, Mechanical & Industrial Engineering Technology Department, Doornfontein Campus, Johannesburg, South Africa
* Errol Molatudi: molatudierrol@gmail.com
The effects of sound pressure level at two observation positions of a fixed and varied blade pitch angle at Low-Mach unsteady incompressible Reynolds-Average Navier-Stokes flow approach, on an H-rotor Vertical Axis Wind Turbine. The objective of the study is to compare the noise dissipation and output power/energy of the airfoil blades design of the vertical axis wind turbine in residential zones. The Ffowcs Williams-Hawkings (FHWH) techniques were applied to validate the output noise and vortex shedding of the different angles of attacks (AoA). The study postulated that the time history of the calculated sound pressure level at two observers positions: the aeroacoustic, blade vortex interaction noise, flow separations, dynamic stall experience from varied angled of attacks are found to produces less noise and vortex shedding compared to the fixed angle of attack.
Key words: Aeroacoustic / Angle-of-Attack / Ffowcs-Hawkings / Sound Pressure level (SPL)
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.