Issue |
MATEC Web Conf.
Volume 347, 2021
12th South African Conference on Computational and Applied Mechanics (SACAM2020)
|
|
---|---|---|
Article Number | 00004 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/matecconf/202134700004 | |
Published online | 23 November 2021 |
Validation of a thermal non-equilibrium Eulerian-Eulerian multiphase model of a 620 MWe pulverized fuel power boiler
University of Cape Town, Department of Mechanical Engineering
* e-mail: rwlbra001@myuct.ac.za
** e-mail: ryno.laubscher@uct.ac.za
*** e-mail: pieter.rousseau@uct.ac.za
The use of a thermal non-equilibrium Eulerian-Eulerian model for the simulation of a 620 MWe power boiler is proposed for capturing the combustion and radiative heat transfer found in the pulverized fuel systems. The models eliminates the use of a Lagrangian reference frame in tracking solid fuel particles thereby reducing the computational expense and time. The model solves the scalar transport for the particle mass, energy and radiation interactions between the pseudo-particle and continuous phases. The goal is to apply the modelling approach to generate a simulation database for different load cases and firing conditions which in turn will be used to study flexible operation. The model is validated against both numerical and applicable site data measurements. It is shown that the model is able to adequately resolve the furnace and superheater wall heat fluxes. Additionally the resolution of the flow field, combustion dynamics and wall fluxes are demonstrated for both an 80% and 60% operational loads. Moreover, it is shown that the Eulerian-Eulerian model results in approximately a 30% computational resource reduction when compared to traditional modelling approaches.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.