Issue |
MATEC Web Conf.
Volume 347, 2021
12th South African Conference on Computational and Applied Mechanics (SACAM2020)
|
|
---|---|---|
Article Number | 00001 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/matecconf/202134700001 | |
Published online | 23 November 2021 |
Representation of simulation errors in single step methods using state dependent noise
Electrical Engineering, University of Cape Town, South Africa
* e-mail: edward.boje@uct.ac.za
The local error of single step methods is modelled as a function of the state derivative multiplied by bias and zero-mean white noise terms. The deterministic Taylor series expansion of the local error depends on the state derivative meaning that the local error magnitude is zero in steady state and grows with the rate of change of the state vector. The stochastic model of the local error may include a constant, “catch-all” noise term.
A continuous time extension of the local error model is developed and this allows the original continuous time state differential equation to be represented by a combination of the simulation method and a stochastic term. This continuous time stochastic differential equation model can be used to study the propagation of the simulation error in Monte Carlo experiments, for step size control, or for propagating the mean and variance. This simulation error model can be embedded into continuous-discrete state estimation algorithms.
Two illustrative examples are included to highlight the application of the approach.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.