Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 06015 | |
Number of page(s) | 8 | |
Section | Artificial Recognition and Application | |
DOI | https://doi.org/10.1051/matecconf/202133606015 | |
Published online | 15 February 2021 |
Music generation and human voice conversion based on LSTM
School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin, China
* Corresponding author: sding@guet.edu.cn
Music is closely related to human life and is an important way for people to express their feelings in life. Deep neural networks have played a significant role in the field of music processing. There are many different neural network models to implement deep learning for audio processing. For general neural networks, there are problems such as complex operation and slow computing speed. In this paper, we introduce Long Short-Term Memory (LSTM), which is a circulating neural network, to realize end-to-end training. The network structure is simple and can generate better audio sequences after the training model. After music generation, human voice conversion is important for music understanding and inserting lyrics to pure music. We propose the audio segmentation technology for segmenting the fixed length of the human voice. Different notes are classified through piano music without considering the scale and are correlated with the different human voices we get. Finally, through the transformation, we can express the generated piano music through the output of the human voice. Experimental results demonstrate that the proposed scheme can successfully obtain a human voice from pure piano Music generated by LSTM.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.