Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 05010 | |
Number of page(s) | 9 | |
Section | Computer Science and System Design | |
DOI | https://doi.org/10.1051/matecconf/202133605010 | |
Published online | 15 February 2021 |
A review of recommendation system research based on bipartite graph
School of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China
* Corresponding author: 674606550@qq.com
The interaction history between users and items is usually stored and displayed in the form of bipartite graphs. Neural network recommendation based on the user-item bipartite graph has a significant effect on alleviating the long-standing data sparseness and cold start of the recommendation system. The whole paper is based on the bipartite graph. An review of the recommendation system of graphs summarizes the three characteristics of graph neural network processing bipartite graph data in the recommendation field: interchangeability, Multi-hop transportability, and strong interpretability. The biggest contribution of the full paper is that it summarizes the general framework of graph neural network processing bipartite graph recommendation from the models with the best recommendation effect in the past three years: embedding layer, propagation update layer, and prediction layer. Although there are subtle differences between different models, they are all this framework can be applied, and different models can be regarded as variants of this general model, that is, other models are fine-tuned on the basis of this framework. At the end of the paper, the latest research progress is introduced, and the main challenges and research priorities that will be faced in the future are pointed out.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.