Issue |
MATEC Web Conf.
Volume 335, 2021
14th EURECA 2020 – International Engineering and Computing Research Conference “Shaping the Future through Multidisciplinary Research”
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 12 | |
Section | Mechanical Engineering | |
DOI | https://doi.org/10.1051/matecconf/202133503003 | |
Published online | 25 January 2021 |
The Analysis of Stone Trapping in Tire Tread for Various Road Conditions
School of Computer Science and Engineering, Faculty of Innovation and Technology, Taylor’s University, 47500, Selangor, Malaysia
* Corresponding author: peixuan.ku@taylors.edu.my
A tire tends to trap stones in its tread pattern when the vehicle is on a move and this might affects the tire balance due to uneven tread wear of tread portion. The study aims to simulate stone trapping performance under various tire tread patterns and road conditions as well as assessing the performance of tires with stones trapped. The stone trapping phenomena on different tire tread pattern were analyzed under dry and wet road conditions. The tire models chosen were the symmetrical tire, asymmetrical tire, and directional tire. The model of these tires, stone and a flat road surface were created using SolidWorks and Fusion360 software and the static structural simulation is performed by using finite element analysis method. Tire inflation analysis and steady state rolling analysis were conducted to evaluate three parameters: total deformation, Von-Mises stress and equivalent elastic strain of the tires. It found that all three parameters are higher when stone trapped in tire for all tread pattern types. Symmetrical tread pattern provides the least wear and tear since it has the lowest increment of maximum equivalent elastic strain in both road conditions. Stone trapping in tire grooves would impact on the lifespan of the tire.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.