Issue |
MATEC Web Conf.
Volume 335, 2021
14th EURECA 2020 – International Engineering and Computing Research Conference “Shaping the Future through Multidisciplinary Research”
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 11 | |
Section | Electric & Electronic Engineering | |
DOI | https://doi.org/10.1051/matecconf/202133502006 | |
Published online | 25 January 2021 |
Transient Stability Assessment of IEEE 9-Bus System Integrated Wind Farm
1 School of Computer Science and Engineering, Faculty of Innovation & Technology, Taylor’s University, Malaysia
2 Electric Power Engineering Department, Faculty of Mechanical & Electrical Engineering, Damascus University, Syria
* Corresponding author: aravindcv@ieee.org
The use of wind energy is increased due to the high demand for sustainable energy. The penetration of wind energy in electrical networks might have several effects on load flow and power system stability. In this research, the transient stability of the IEEE 9-Bus system integrated with Doubly Fed Induction Generator (DFIG) is analyzed. Additionally, different penetration levels of a wind farm are considered. With a 5% penetration of wind energy, the maximum power angle of the synchronous generator is around 129 deg, which is quite similar to the existing system. In contrast, the power angle increases to 140 deg after adding more wind turbines with 15% wind farm penetration. Then, the system loses stability with a 25% penetration of wind energy. The results indicate that the high penetration of wind energy has a destabilizing impact on the studied network. Moreover, the location of the wind farm affects transient stability. This research intends to contribute towards assessing the stability of the power system integrated DFIG. Hence, this study will support the increase of using wind energy in power systems rather than conventional power plants and evaluate the stability to enable the reliability of alternative energy sources in the grid.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.