Issue |
MATEC Web Conf.
Volume 333, 2021
The 18th Asian Pacific Confederation of Chemical Engineering Congress (APCChE 2019)
|
|
---|---|---|
Article Number | 07002 | |
Number of page(s) | 5 | |
Section | Biochemical Engineering | |
DOI | https://doi.org/10.1051/matecconf/202133307002 | |
Published online | 08 January 2021 |
Retrotransposon-mediated Gene Transfer for Animal Cells
1
Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
2
Department of Chemical Engineering, Faculty of Engineering, Fukuoka, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 8190395, Japan
* Corresponding author: kamihira@chem-eng.kyushu-u.ac.jp
Gene delivery methods for animal cells are one of the most important tools in biotechnology fields such as pharmaceutical protein production, generation of transgenic animals and gene therapy. Because retrotransposons can move their own sequences to new genomic locations by a “copy-and-paste” process known as retrotransposition, we attempted to develop a novel gene transfer system based on retrotransposon. A full-length long interspersed element-1 (LINE-1) contains a 5’ untranslated region (5’UTR), two non-overlapping open reading frames (ORFs) separated by a short inter-ORF sequence, and a 3’UTR terminating in an adenosine-rich tract. We constructed a LINE-1 vector plasmid including components necessary for retrotransposition. An intron-disrupted Neo reporter gene and a scFv-Fc expression unit under the control of CMV promoter were added into 3’UTR in order to evaluate retrotransposition and express scFv-Fc. CHO-K1 cells transfected with the plasmids were screened with G418. The established cell clones produced scFv-Fc proteins in the culture medium. To control retrotransposition steadily, we also established retrotransposon systems that supply ORF2 or ORF1–2 separately. Genomic PCR analysis revealed that transgene sequences derived from the LINE-1 vector were positive in all clones. All the clones tested produced scFv-Fc in the culture medium.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.