Issue |
MATEC Web Conf.
Volume 326, 2020
The 17th International Conference on Aluminium Alloys 2020 (ICAA17)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 7 | |
Section | Phase Transformations | |
DOI | https://doi.org/10.1051/matecconf/202032602004 | |
Published online | 05 November 2020 |
Effect of ceramic particles on precipitation in an Al-Mg-Si alloy with silicon excess during ageing
Univ. Lyon, INSA Lyon, MATEIS – UMR CNRS 5510, Bât. Saint-Exupéry, 25 avenue J. Capelle, F-69621 Villeurbanne Cedex, France
* Corresponding author: gwenaelle.meyruey@insa-lyon.fr
Providing a good balance between lightweight and high mechanical properties, the aluminum-based metal matrix composites (MMC) became an interesting alternative for specific industrial applications. However, considering an Al-Mg-Si alloy with a high silicon excess, the ceramic particles added as reinforcement can act on : i) the precipitation kinetics of the coherent and semi-coherent phases, ii) the precipitation sequence of the alloy and iii) the loss of mechanical strength from a peak-aged microstructure obtained by a T6 condition. In order to understand the influence of reinforcement on these aspects, the composite was characterized during isothermal ageing between 100°C and 350°C, allowing us to propose an experimental Isothermal Transformation Curve. Compared to the unreinforced alloy, heterogeneous precipitation of disordered semi-coherent phases occurs on dislocations and the precipitation kinetics were found to be accelerated in the composite leading to an acceleration of the loss of strength from the T6 state, due to the precipitation of the Type-C phase. A study performed on a deformed alloy, demonstrated that the most of the differences observed between the unreinforced alloy and the composite can be explained by the high dislocation density generated in the matrix of the composite due to the presence of ceramic particles. Finally, the JMAK approach turned out to be a powerful tool to model the decrease in mechanical strength occurring during isothermal treatments from T6 state.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.