Issue |
MATEC Web Conf.
Volume 326, 2020
The 17th International Conference on Aluminium Alloys 2020 (ICAA17)
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 5 | |
Section | Plenary Lecture & ECR Award Recipients | |
DOI | https://doi.org/10.1051/matecconf/202032601007 | |
Published online | 05 November 2020 |
Unravelling the characteristics of Al-alloy corrosion at the atomic to nanometre scale by transmission electron microscopy
1 Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia.
2 College of Engineering and Computer Science, The Australian National University, Acton, ACT, 2601, Australia.
* Corresponding author: shravan.kairy@monash.edu
The localised corrosion associated with Mg2Si in the Al-matrix of an Al-Mg-Si alloy was studied in 0.1 M NaCl at pH 6 by quasi in-situ transmission electron microscopy. Herein, physical imaging of corrosion at the atomic to nanometre scale was performed. Phase transformation and subsequent chemical composition variations associated with the localised corrosion of Mg2Si were studied. It was observed that corrosion initiated upon Mg2Si, often preferentially at the interface with the Al-matrix, and propagated until Mg2Si was completely dealloyed by Mg-dissolution, resulting in an amorphous SiO-rich phase remnant. The SiO-rich remnant became electrochemically inert and did not initiate corrosion in the Al-matrix. This study provides a clear understanding on the localised corrosion of Al-alloys associated with Mg2Si. In addition, the methodology followed in this study can also be applied to understand the role of precipitates and second phase particles in the localised corrosion of Al-alloy systems.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.