Issue |
MATEC Web Conf.
Volume 322, 2020
MATBUD’2020 – Scientific-Technical Conference: E-mobility, Sustainable Materials and Technologies
|
|
---|---|---|
Article Number | 01032 | |
Number of page(s) | 10 | |
Section | E-mobility, Sustainable Materials and Technologies | |
DOI | https://doi.org/10.1051/matecconf/202032201032 | |
Published online | 14 October 2020 |
Effect of the amount of river sediment on the basic properties of cement mortars
Cracow University of Technology, Faculty of Civil Engineering, Chair of Building Materials Engineering, Warszawska St. 24, 31-155 Cracow, Poland
* Corresponding author: marcin.adamczyk@pk.edu.pl
According to current legal regulations, bottom sediment in watercourses containing heavy metals are considered dangerous to the environment and should be properly managed after extraction. Due to the well-known excellent ability of the products of cement hydration to immobilize heavy metals, the possibility of utilizing this type of waste products in cement composites was preliminary tested. For this purpose, basic research was carried out on the technological and mechanical characteristics of binders containing sediment from one of the rivers located in Lesser Poland. Standard mortars made of Portland cement CEM I and river sediment dried at 105°C were used for the tests. This supplement replaced cement in the amount of 10%, 20%, 30% and 40% by weight. The technological properties such as: water demand, setting time, consistency and mechanical properties were verified. Compressive and tensile strength at bending of hardened mortars were tested at different curing periods, i.e. after 14, 28 and 90 days. The obtained test results confirm that the fraction of river sediment in the binder in the amount of 10% generally does not adversely affect the properties of mortars, however, its greater amount is reflected in changes in the technological features and in a clear reduction of mechanical properties of the tested mortars.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.