Issue |
MATEC Web Conf.
Volume 319, 2020
2020 8th Asia Conference on Mechanical and Materials Engineering (ACMME 2020)
|
|
---|---|---|
Article Number | 10002 | |
Number of page(s) | 5 | |
Section | Material Synthesis and Characterization | |
DOI | https://doi.org/10.1051/matecconf/202031910002 | |
Published online | 10 September 2020 |
Fabrication and Characterization of PVDF with an Additive of Nanozeolite via Electrospinning and Non-solvent Induced Phase Separation (NIPS) Process
Mapúa University, School of Chemical, Biological, and Materials Engineering and Sciences, 658 Muralla St., Intramuros Manila, 1002 Philippines
* Corresponding author: rraquino@mapua.edu.ph
In this study, polyvinylidene fluoride with an additive of nanozeolite (PVDF/NZ) membranes were prepared, characterized and evaluated. The concentrations of the nanozeolite incorporated into PVDF were varied from 0.25%, 0.50% and 0.75 % with N-methyl-2-pyrrolidone (NMP) as solvent and the corresponding effects of nanozeolite on the polymer matrix were investigated in terms of performance and properties. There are two methods in preparing the membranes, namely: Non-solvent Induced Phase Separation (NIPS) and electrospinning. The hydrophobicity of the membranes was characterized by contact angle, the surface morphology using Scanning Electron Microscopy (SEM), and the mechanical properties by Universal Testing Machine (UTM). The presence of organic and inorganic matter was investigated using Fourier-Transform Infrared (FTIR). The SEM images of both fabricated nanocomposite membranes showed that after the addition of nanozeolite particles into PVDF matrix has affected the surface morphology, flat-sheet resulted decreasing in porous and electrospun resulted less beads and increasing fiber diameter after adding an extra amount of nanozeolite. The chemical bond or molecular structure of flat-sheet and electrospun membranes obtained same functional groups, however the electrospun resulted a high absorption of alkanes. The contact angle of both nanocomposite fabricated membranes exhibited an increasing contact angle, yet the PVDF/0.75NZ of electrospun membrane obtained higher hydrophobic surface compared to others. The result of UTM showed that on flat-sheet, the tensile strength was obtained by pure PVDF membrane while the PVDF/0.25NZ of electrospun membrane was able to achieve an optimum tensile strength. In fact, the tensile strength via NIPS need to be improved.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.