Issue |
MATEC Web Conf.
Volume 307, 2020
International Conference on Materials & Energy (ICOME’17 and ICOME’18)
|
|
---|---|---|
Article Number | 01034 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/matecconf/202030701034 | |
Published online | 10 February 2020 |
Comparative numerical study of single and two-phase models of nanofluid liquid film evaporation in a vertical channel
1 Laboratory of Energy, Materials and Systems Engineering, Ibn Zohr University, Agadir, Morocco
2 Department of physics, Faculty of Science and Technology, University Hassan II, Mohammedia, Morocco
* Corresponding author: monssif.najim@edu.uiz.ac.ma
The main purpose of this study is to survey numerically comparison of two-phase and single-phase models of heat and mass transfer of Al2O3-water nanofluid liquid film flowing downward a vertical channel. A finite difference method is developed to produce the computational predictions for heat and mass transfer during the evaporation of the liquid film approached by the single-phase and two-phase models. The model solves the coupled governing equations in both nanofluid and gas phases together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by Tridiagonal Matrix Algorithm. The results show that the two-phase model is more realistic since it takes into account the thermophoresis and Brownian effects.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.