Issue |
MATEC Web Conf.
Volume 307, 2020
International Conference on Materials & Energy (ICOME’17 and ICOME’18)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/matecconf/202030701005 | |
Published online | 10 February 2020 |
Hydromagnetic natural convection from a horizontal porous annulus with heat generation or absorption
1 Mohammadia School of Engineers, Mohammed V University, Agdal, Rabat, Morocco
2 Team of Applied Physics and New Technologies, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
* Corresponding author: belabide@gmail.com
The problem of unsteady laminar, two-dimensional hydromagnetic natural convection heat transfer in a concentric horizontal cylindrical annulus filled with a fluid-saturated porous medium in the presence of a transverse magnetic field and fluid heal generation effects is studied numerically. It is assumed that the inner and outer walls of the cylindrical annulus are maintained at uniform and constant temperatures Ti and To respectively. The model consists of the heat equation and the equations of motion under the Darcy law. The derived problem with the stream function-temperature formulation is solved numerically using the alternating direction implicit method. This investigation concerns the effect of magnetic field inclination angle, Hartmann number and heat generation on the heat transfer and the flow pattern. The obtained numerical results are presented graphically in terms of streamlines and isotherms. It was found that the heat transfer mechanisms and the flow characteristics depend strongly on the magnetic field inclination angle, Hartmann number and heat generation..
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.