Issue |
MATEC Web Conf.
Volume 304, 2019
9th EASN International Conference on “Innovation in Aviation & Space”
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 8 | |
Section | Flight Physics: Noise & Aerodynamics | |
DOI | https://doi.org/10.1051/matecconf/201930402003 | |
Published online | 17 December 2019 |
To the issue of evaluating sonic boom overpressure and loudness
Central Aerohydrodynamic Institute (TsAGI),
140180
Zhukovsky,
Russia
* Corresponding author:
andrey.kazhan@tsagi.ru
At present, in the world there is a growing interest in the development of a new generation of supersonic passenger aircraft. One of the main problems of creating such aircraft is to ensure both an acceptable sonic boom level and high aerodynamic characteristics in the supersonic cruising mode. This requires the development of reliable methods for obtaining the near field under the plane with taking into account the influence of the boundary layer, calculation of overpressure signature on the ground and evaluation of sonic boom loudness. In this work four variants of the equivalent body of revolution of minimum sonic boom with different nose sharpening were investigated for an aircraft weighing 19 tons in supersonic cruising flight at Mach number of 1.7 and altitude of 15.5 km using the software package for solving the Reynolds–averaged Navier–Stokes equations (RANS) ANSYS CFX. A macro for calculating the overpressure signature on the ground for the distribution of disturbances in the near field under the aircraft and a program for evaluating the sonic boom loudness in various metrics were developed. Computational mesh verification of the results was carried out, the obtained overpressure signatures were compared with theoretical data and calculation results from the software package for the integration of complete system of Euler equations by finite–difference method X–CODE. The effect of the sharpening of the nose part on aerodynamic drag and sound boom characteristics was shown. The work was done in the interests of the international project RUMBLE (RegUlation and norM for low sonic Boom LEvels).
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.