Issue |
MATEC Web Conf.
Volume 293, 2019
2019 7th Asia Conference on Mechanical and Materials Engineering (ACMME 2019)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 5 | |
Section | Material Physics | |
DOI | https://doi.org/10.1051/matecconf/201929303001 | |
Published online | 25 September 2019 |
Accelerated Creep Life Assessment of In-Service Power Plant Components
Electromechanical Engineering Program, Abu Dhabi Polytechnic, Abu Dhabi, UAE
a Corresponding author: saud.aldajah@adpoly.ac.ae
Structural metals used in plant components are subject to aging from a combination of fatigue, creep, and corrosion. Exposure to elevated temperatures promotes creep. Aged metals lose toughness, or the ability to absorb energy at stress above the yield point and cannot endure an occasional high load without fracturing. Creep is one of the most critical factors for determining the structural integrity of components. The main objective of the current study is to assess the remaining creep life of various 20-year old power plant engineering components such as the high temperature fasteners. Due to time constraints, the approach followed in this study was to utilize the accelerated high temperature creep testing in addition to Scanning Electron Microscopy (SEM) analysis to assess the remaining life of 4 different samples. The accelerated high temperature creep tests were conducted at a stress level of 61 MPa and at a temperature of 1000°C for samples Sample 1 (original), Sample 2, Sample 3 and Sample 4; these samples were collected from different parts of the power plant. SEM analysis was carried out for all the samples. The results of the accelerated high temperature tests were compared to similar materials’ theoretical creep data using Larson Miller curve. The Larson Miller actual creep lives of the tested samples were much higher than the experimental ones, which suggest that the samples are critically aged. SEM analysis on the other hand, showed that all samples have high percentage of creep voids
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.