Issue |
MATEC Web Conf.
Volume 292, 2019
23rd International Conference on Circuits, Systems, Communications and Computers (CSCC 2019)
|
|
---|---|---|
Article Number | 04010 | |
Number of page(s) | 11 | |
Section | Signal Processing | |
DOI | https://doi.org/10.1051/matecconf/201929204010 | |
Published online | 24 September 2019 |
The Basic Architecture of the System with the A-GNSS Receiver
1Department of Avionics and Control Systems, Polish Air Force University, ul. Dywizjonu 303 nr 35, 08-521, Deblin
* Corresponding author: l.setlak@wsosp.pl, r.kowalik@wsosp.pl
The paper presents the results of obtained research defining the accuracy of determining the position of a specific object (aircraft, UAV), equipped with a mobile receiver operating the navigation system A-GNSS. The Assisted GNSS technology is designed to improve the performance of the GNSS receiver by reducing the time needed for the receiver to calculate its location. It also increases the sensitivity of the received signal by the receiver, as a result, the accuracy of the determined position of a specific object can be improved. Thanks to its application, the radio-navigation receiver becomes compatible with the requirements of current standards, and what is associated with it this kind of technology has become an important part of the cellular industry. The aim of the article is to examine the solution of A-GPS system and to demonstrate its effectiveness in the process of determining the position of the UAV object. The paper presents aspects of the functionality of the A-GPS system solution work, mathematical model of object position determination using A-GNSS system and discusses the technology that is used for the integration of navigation systems with cellular network. In the final part of the work, based on the analysis of the research literature, the presented mathematical model and simulations, conclusions were formulated, which are reflected in practical applications.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.