Issue |
MATEC Web Conf.
Volume 292, 2019
23rd International Conference on Circuits, Systems, Communications and Computers (CSCC 2019)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 5 | |
Section | Communications | |
DOI | https://doi.org/10.1051/matecconf/201929202002 | |
Published online | 24 September 2019 |
A T-branch diplexer based on directional couplers and resonant cavities in photonic crystal
1Laboratory of Hyperfrequency and Semiconductors (L.H.S), Department of Electronics, Faculty of Technology and Sciences, University of Mentouri brothers Constantine 1, Constantine, 25000, Algeria
* Corresponding author: labbani.amel@umc.edu.dz
In this paper a T-branch optical diplexer in two dimensional (2D) photonic crystal (PhC) to select two telecommunication wavelengths 1493.6nm and1553nm is investigated. In our design directional couplers (DC) and resonant cavity (RC) are utilized. A square lattice of silicon (Si) rods in air is used as fundamental structure. The coupling regions consist of three entire rows of decreased Si rods. Plane wave expansion method (PWE) and finite difference time domain (FDTD) method are utilized to analyze and simulate the characteristics of the designed device. The average transmission efficiency of our proposed diplexer is about 99.75%. High quality factor and extremely small crosstalk were achieved. The total size of the suggested design is 272.214 μm2, which is very suitable for nanotechnology based demultiplexing applications.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.