Issue |
MATEC Web Conf.
Volume 291, 2019
2019 The 3rd International Conference on Mechanical, System and Control Engineering (ICMSC 2019)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 4 | |
Section | Mechanical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201929102006 | |
Published online | 28 August 2019 |
Investigation of Slip Occurrence in the Ring Rolling Process
Lublin University of Technology, Nadbystrzycka 36, 20-618, Lublin, Poland
a Corresponding author: a.gontarz@pollub.pl
Ring rolling is a hot forming process for producing rings that have large diameters when compared to their cross sections. This process is very dynamic and involves considerable variations in ring shape and size. One of the failure modes in ring rolling processes is slip that occurs when a thickness reduction, exceeds the limit value. The thickness reduction depends on the tool speed and dimensions as well as ring size, and varies over time. This paper reports results of a study investigating the thickness reduction with respect to slip occurrence. In terms of wall thickness reduction, the process can be divided into three distinct stages (excluding the sizing stage): (i) initial stage corresponding to the first revolution of the roll, (ii) main stage, when the proper ring rolling takes place, (iii) final stage, when the main roll does not move in an axial direction but the ring is being formed during one revolution of the tool. It has been found that the most slip-prone moment is the end of the second and the beginning of the third stage of the ring rolling process, when the wall thickness reduction is the highest. Based on a comparison of the calculated thickness reduction and its limit values, it could be predicted whether slip would occur, and if so – in what stage of the rolling process. Numerical results and experimental findings are in good agreement.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.