Issue |
MATEC Web Conf.
Volume 291, 2019
2019 The 3rd International Conference on Mechanical, System and Control Engineering (ICMSC 2019)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 5 | |
Section | Mechanical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201929102004 | |
Published online | 28 August 2019 |
Design of Spatial Inverted Pendulum System
1 Van Yüzüncü Yil University, Mechanical Engineering Department, Van, Turkey
2 Van Yüzüncü Yil University, Electronics Engineering Department, Van, Turkey
a Corresponding author: firatkara@yyu.edu.tr – This author is currently working at Izmir Institute of Technology.
Pendulum-based systems which are highly non-linear and unstable have become one of the most widely studied subject of control theory. The close interest of researchers on inverted pendulum problem arises from its strong representation ability with real engineering applications. This study focuses on the design and production of an experimental setup in which a spatial inverted pendulum can be balanced by means of a planar mechanism in RRRRP configuration. A mechanism with two different motion inputs (rotational and linear) that no studies were performed on before was prototyped. This system is highly unstable and shows non-linear dynamic behavior. The mechanical parts that forms the system were manufactured by a 3D printer and a CNC milling machine. At the end of study, a four-degree of freedom spatial inverted pendulum experimental setup has been established on which the control works can be carried out, by installing the electronic and electro-mechanical equipment.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.