Issue |
MATEC Web Conf.
Volume 289, 2019
Concrete Solutions 2019 – 7th International Conference on Concrete Repair
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 8 | |
Section | Strengthening Materials and Techniques/Repair with Composites | |
DOI | https://doi.org/10.1051/matecconf/201928904003 | |
Published online | 28 August 2019 |
Hybrid fibre-reinforced geopolymer (HFRG) composites as an emerging material in retrofitting aging and seismically-deficient concrete and masonry structures
Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
* Corresponding author: ergua@byg.dtu.dk
Fibre-reinforced polymer (FRP) systems have recently become popular in repairing concrete or masonry structures because of their inherent advantages. In spite of these benefits, FRPs have drawbacks having low fire resistance, poor environmental sustainability and incompatibilty with the substrate concrete. The effort to address these issues has led to the development of an emerging strain hardening cementitious (SHC) material using an inorganic polymer known as hybrid fibre-reinforced geopolymer (HFRG) composites. Compared with cement-based SHC composites, HFRG has better bond performance to concrete substrates, higher fire resistance, greater corrosion durability and helps to reduce CO2 emissions. This paper reviews the recent development of HFRG composites as an emerging repair material. Literature reveals that flowability of a fresh HFRG mixture decreases with increasing fibre content though still workable up to 2% fibre volume. Fibre synergy could result in 10–181% higher flexural toughness of geopolymer composites than when just using mono fibres. The application of HFRG composites to RC beams increased displacement ductility by to 263%. To date, there has been no reported field application of HFRG as a repair material though mono-fibre FRG has been field-applied as a strengthening material in large-diameter sewer RC pipes, RC culverts, RC sewerage manholes and dam surface improvement.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.